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1. Goals of my talk

There are several purposes for this talk:

(1) Explain and advertise the methods the author has developed in collaboration with Nicolas
Bédaride and Arnaud Hilion over a series of papers in the past 10 years.

(2) Present 2 non-evident results (about the existence of “many” invariant measures) which
have been proved by these methods.

(3) Give a bit of “moral” input from somebody outside the symbolic dynamics main stream.
(4) [if time permits] Give a glimpse about a very new result about the characterization of

substitutive subshifts.

2. Standard and not so standard basics

2.1. Subshifts and their languages.

We always denote by A “ ta
1

, . . . , adu (or by An “ ta
1

, . . . , adpnqu or B “ tb
1

, . . . , bdpBqu) a finite

alphabet, and byA˚ the free monoid overA. LetAZ be the set of biinfinite words x “ . . . x´1

x

0

x

1

. . .

with xk P A, equipped with the shift operator T : AZ Ñ AZ, where T pxq arises from x by
subtracting 1 from the index k of any of the letters xk. The set Opxq “ tTnpxq | n P Zu Ñ AZ is
the shift-orbit of x.

A subshift X over A is a subset X Ñ AZ which is non-empty, T -invariant and closed (in the
product topology of AZ with respect to the discrete topology on A). We denote by ⌃pAq the set
of all subshifts X Ñ AZ.

A subshift X Ñ AZ is minimal if it is a minimal element of ⌃pAq with respect to the inclusion;
equivalently, for any x P X one recovers X as closure of Opxq in AZ.

For every subshift X we denote by LpXq Ñ A˚ the language of X, where w “ w

1

. . . wm P LpXq
i↵ for some x P X one has x

1

“ w

1

, . . . , xm “ wm. Conversely, by virtually the same rule we see
that any infinite set L Ñ A˚ determines a subshift XpLq, with XpLpXqq “ X and LpXpLqq Ñ L,
where equality holds if L is subshift language.

Hence subshifts and subshift languages determine each other vice versa. BUT: The union of
infinitely many subshifts may not be closed and hence not be a subshift, while the union of infinitely
many subshift languages is always a subshift language. Conversely, the intersection of infinitely
many subshifts, if non-empty, is always a subshift, while the intersection of subshift languages, even
if assumed to be infinite, may well not be a subshift language.

The topological entropy hX of a subshift X Ñ AZ is defined via

hX “ lim
nÑ8

log#tw P LpXq | |w| “ nu
n

,

where |w| denotes the length (= the number of letters) of the word w P A˚.
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2.2. Morphisms and the “image subshift”.

Let A and B be finite alphabets, and let � : A˚ Ñ B˚ be a monoid morphism. All of our monoid
morphisms are assumed to be non-erasing, by which we mean that no ai P A may be mapped to
the empty word " P B˚.

The morphism � determines an incidence matrix

Mp�q “ p|�pajq|biqbiPB, ajPA

where for any v, w P B˚ we denote by |w|v the number of occurrences of the word v as factor (=
subword) in w.

Via biinfinite prolongation the morphism � induces a map �

Z : AZ Ñ BZ, but the set �ZpAZq Ñ
BZ will in general not be closed under the shift operator T on BZ. Nevertheless, for any shift-orbit
Opxq Ñ AZ there is a well defined image orbit �

OpOpxqq :“ Op�Zpxqq Ñ BZ.
Any monoid morphism � : A˚ Ñ B˚ (always assumed to be non-erasing !) induces a subshift

map

�

⌃ : ⌃pAq Ñ ⌃pBq , X fiÑ �pXq ,
where for every subshift X Ñ AZ the image subshift �pXq :“ �

⌃pXq is defined as the union of
the image orbits of the orbits of X (which is always closed !). Equivalently, we can set �pXq “
Xp�pLpXqqq. The subshift �pXq is also the smallest subshift which contains the set �ZpXq, which
is in general not a subshift and may not be confused with the image subshift �pXq.

2.3. Recognizability.

A monoid morphism � : A˚ Ñ B˚ is recognizable in a subshift X Ñ AZ if, roughly speaking,
every biinfinite word y of the image subshift Y “ �pXq Ñ BZ can be lifted (“desubstituted”) in
precisely one way to a preimage word x P X. The precise definition is technical and a bit tedious,
but one can show:

Lemma 2.1 ([5]). (1) If X is aperiodic (ô X does not contain any . . . www . . .), then � is

recognizable in X if and only if the induced map �

O
is injective on the set of shift-orbits of X.

(2) If some . . . www . . . is contained in X, then one has to require in addition that, if �pwq is a

proper power (i.e. �pwq “ v

m
for some m • 2), then so is w.

2.4. Invariant measures and the measure transfer.

An invariant measure µ on a subshift X Ñ AZ is a Borel measure on AZ which is invariant under
the shift operator T and has support in X. The set of such invariant measures is denoted by MpXq,
which is a cone in that it possesses a canonical R•0

-linear structure. We say that µ P MpXq is
probability if µpXq “ 1. The support of any non-zero µ P MpXq is a subshift X 1 Ñ X.

The set MpXq embeds canonically into the infinite dimensional vector space RA˚
via µ fiÑ

pµprwsqqwPA˚ , where the cylinder rws Ñ AZ denotes the set of all biinfinite words x P AZ with
mono-infinite positive half-word that starts with w. From the embedding MpXq Ñ RA˚

the
set MpXq inherits the product topology, which agrees with the more generally known (but less
practical) weak*-topology.

A measure µ P MpXq is ergodic if it can not be written as non-trivial linear combination within
MpXq (i.e. µ is an extremal point of MpXq). Ergodic probability measures are always linearly
independent, so that the existence of m • 1 distinct ergodic probability measures on X assures us
that dimMpXq • m (and conversely).

For any subshift X Ñ AZ we consider the map

⇣X : MpXq Ñ RA
•0

, µ fiÑ ~v

µ
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where the letter frequency vector ~v µ for any invariant measure µ is given by ~v µ :“ pµpra
1

sq, . . . , µpradsqq.
We denote by CpXq :“ ⇣XpMpXqq Ñ RA the R•0

-linear cone which is image of the map ⇣X . Note
that for any µ P MpXq we have µpXq “ ∞

aiPA µpraisq.
For any monoid morphism � : A˚ Ñ B˚, any subshift X Ñ AZ and any measure µ P MpXq there

is a well defined transferred measure µ

� P Mp�pXqq, and the issuing map

�

M
X : MpXq Ñ Mp�pXqq , µ fiÑ µ

�

has the following properties, for any µ P MpXq (see [5], [4]):

(1) �

M
X is R•0

-linear.
(2) �

M
X is continuous.

(3) �

M
X is surjective.

(4) �

M
X is injective, if � is recognizable in X. (Indeed, it su�ces that �O is injective in X.)

(5) The support of µ� is equal to the image subshift of the support of µ.
(6) The letter frequency vector ~v

µ�
of the transferred measure µ

� is derived from the letter
frequency vector ~v µ of µ by the linear map

~v

µ fiÑ ~v

µ� “ Mp�q ¨ ~v µ
.

(7) If µ is ergodic, then so is µ�.
(8) For any w P A˚ the cylinder measures satisfy µ

�pr�pwqsq • µprwsq.
(9) For any v P B˚ the value of µ�prvsq can be computed (by hand) via a fairly elegant formula

from the values of the µprwsq of any w P A˚ with |w| § |v| ` 2.
(10) For any non-empty w P A˚ the atomic measure µw (which is zero outside the orbit of

. . . www . . . and satisfies µwpAZq “ |w|) is mapped by �

M
X to the atomic measure µ�pwq.

(11) In particular, for a probability measure µ the transferred measure µ

� will in general not be
probability.

2.5. S-adic expansions and vector towers.

A backwards infinite (“directive”) sequence of monoid morphisms –›
� “ p�n : A˚

n`1

Ñ A˚
nqn•0

is said to be everywhere growing if the value �´pnq :“ mint|�
0

˝ . . . ˝ �n´1

paiq| | ai P Anu (= the
minimal level letter length) tends to 8 for n Ñ 8. With this (throughout the sequel assumed)
hypothesis the sequence –›

� defines the subshiftX–›� :“ XpLp–›
� qq Ñ AZ

0

as generated by the language
Lp–›

� q :“ î
n•0

t�
0

˝ . . . ˝ �n´1

paiq | ai P Anu. The directive sequence –›
� is an S-adic expansion (or

S-adic development) of a subshift X Ñ AZ if one has A “ A
0

and X “ X

–›� .
For any n

0

• 0 the truncated directive sequence –›
� :n0 :“ p�nqn•n0 generates the level n

0

subshift

Xn0 :“ X

–›� :n0
, and one has �npXn`1

q “ Xn for all n • 0. We thus obtain the infinite commutative
diagram

. . .

�M
n`1›Ñ MpXn`1

q �M
n›Ñ MpXnq �M

n´1›Ñ . . .

�M
1›Ñ MpX

1

q �M
0›Ñ MpXq

Ó ⇣Xn`1 Ó ⇣Xn Ó ⇣X1 Ó ⇣X

. . .

Mp�n`1q›Ñ CpXn`1

q Mp�nq›Ñ CpXnq Mp�n´1q›Ñ . . .

Mp�1q›Ñ CpX
1

q Mp�0q›Ñ CpXq
where p�nqMXn`1

has been abbreviated to �

M
n .

From the above surjectivity of the measure transfer map we know that for every µ P MpX–›� q
there exists for any n • 0 a measure µn P MpXnq (with µ

0

“ µ) such that together they form a
measure tower pµnqn•0

on

–›
� in that µn “ µ

�n
n`1

for all n • 0. Via the above maps ⇣Xn we deduce
a vector tower p~vnqn•0

on

–›
� (i.e. ~vn “ Mp�nq ¨ ~vn`1

for all n • 0) by setting ~vn “ ~v

µn to be the
letter frequency vector of µn (as defined above).
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If the sequence –›
� is totally recognizable (i.e. every �n is recognizable in Xn`1

) then µ determines
uniquely the measure tower pµnqn•0

and hence the vector tower p~vnqn•0

. Without that hypothesis
we still have:

Theorem 2.2 ([2],[4]). For any everywhere growing directive sequence

–›
� every vector tower

p~vnqn•0

on

–›
� is derived (as letter frequency vectors) from some measure tower pµnqn•0

on

–›
� .

In particular, every vector tower

–›
v “ p~vnqn•0

on

–›
� determines an invariant measure µ

–›v :“ µ

0

on the subshift X

–›� . The issuing map m–›� : –›
v fiÑ µ

–›v
from the set of vector towers on

–›
� to MpXq

is R•0

-linear and surjective.

As a consequence, we observe that the family of incidence matrices for the level maps of any S-adic
development of a subshift X determines the measure cone MpXq, up to R•0

-linear isomorphisms.
To finish this subsection we quote two well known criteria (see [6]) for subshifts X by means of

any S-adic expansion p�n : A˚
n`1

Ñ A˚
nqn•0

of X, both stated here only for the case needed below:

Proposition 2.3. If for infinitely many integers n • 0 the incidence matrix Mp�nq is positive,

then X is minimal.

Proposition 2.4. If the (above defined) minimal level letter length �´pnq satifies lim
nÑ8

logpcardpAnqq
�´pnq “

0, then X has topological entropy hX “ 0.

3. Subshifts with many ergodic measures

For any integer d • 1 we now consider for an arbitrary parameter ` P R•0

the d ˆ d-matrix
Mdp`q :“ ` ¨ Iddˆd `1dˆd , where 1dˆd is the “Attila matrix” with all entries equal to 1. We observe
that the d-dimensional center vector ~cd (also with all entries equal to 1) satisfiesMdp`q~cd “ p``dq~cd ,
while for the k-th coordinate unit vector ~ek we obtain Mdp`q~ek “ `~ek `~cd . Hence the 2-dimensional
R•0

-subcone spanned by ~cd and ~ek is mapped into itself, where the extremal direction of ~cd is
fixed, while the other extremal direction, given by ~ek, is mapped arbitrarily close to itself by
choosing the parameter ` su�ciently large. It follows directly that for any su�ciently fast growing
sequence of parameters `pnq • 0 the nested infinite intersection . . . Ñ C

2 Ñ C

1 Ñ C

0 of the cones
C

n :“ Mdp`p0qq ¨ . . . ¨ Mdp`pnqq ¨ Rd
•0

has dimension d. This shows (invoking also Proposition 2.4):

Theorem 3.1 ([3]). For any integer d • 1 with alphabet Ad “ ta
1

, . . . , adu, and for any su�ciently

fast growing family of positive integers p`pnqqn•0

, the subshift X Ñ AZ
d generated by the directive

sequence p�dp`pnqq : A˚
d Ñ A˚

dqn•0

, with �dp`pnqq : ak fiÑ a

`pnq
k a

1

a

2

. . . ad for all k “ 1, . . . , d , is
minimal and possesses d distinct invariant ergodic probability measures.

[In [3] it is also shown that the above sequence of the morphisms �dp`pnqq can be refined to a

sequence of morphisms �n : A˚
d Ñ A˚

d where each �n belongs to an a priori given set S of finitely

many (indeed 4 su�ce) substitutions.]

We now use the same basic method to produce a large family of subshiftsX with a bit of an exotic
combination of properties, as X is “small” in that X is minimal and has entropy hX “ 0, while
simultaneously X is “large” since it carries infinitely many invariant ergodic probability measures.
The first such families have recently been established by V. Cyr and B. Kra in [9].

For this purpose we define for every d • 2 the morphism ⌧d : A˚
d`1

Ñ A˚
d via ak fiÑ a

2

k if
k “ 1, . . . , d and ad`1

fiÑ a

1

a

2

. . . ad. The exponent 2 is used in showing that ⌧d is recognizable in
any subshift X Ñ AZ

d`1

which does not contain any of the periodic words . . . akakak . . .. Similarly,

the morphisms �dp`q from Theorem 3.1 are recognizable in the full shift AZ
d , if ` • 2. It follows

that the composition �dp`q ˝ ⌧d induces a measure transfer map p�dp`q ˝ ⌧dqMX which is injective for
any aperiodic subshift X Ñ AZ

d`1

.
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We now observe that, again, for any d • 2 the d ˆ pd ` 1q-matrix M

1
dp`q :“ Mp�dp`q ˝ ⌧dq maps

~cd`1

to a multiple of ~cd , and ~ek (for 1 § k § d) to some �~ek`�

1
~cd, with �{�1 large for large `. Hence

the same arguments as before show that, for any fixed d • 2 and varying large n • d, the subcone of
Rn`1

•0

spanned by ~e

1

, . . . ,~ed has for the products M 1
dp`dpdqq ¨M 1

d`1

p`dpd` 1qq ¨ . . . ¨M 1
np`dpnqq nested

image-cone intersection “from infinity” of dimension d, provided that the parameters `dpnq grow
fast enough for n Ñ 8. Setting `pnq :“ maxt`

2

pnq, `
3

pnq, . . . , `npnqu we obtain from the above
injectivity of the measure transfer and from the criteria in Propositions 2.3 and 2.4 the desired
conclusion:

Theorem 3.2 ([4], Thm. 7.4). For any su�ciently fast growing family of positive integers p`pnqqn•2

the subshift X Ñ AZ
2

generated by the directive sequence p�np`pnqq˝⌧nqn•2

possesses infinitely many

distinct invariant ergodic probability measures. Furthermore X is minimal and has entropy hX “ 0.

The method presented here admits many more applications, both with respect to showing unique
ergodicity as well as showing the existence of infinitely many ergodic probability measures. Pre-
liminary calculations of the speaker indicate the possibility of such applications for instance to the
Avila-Damanik-Zhang counter-examples to the Simon conjecture in [1], to the “Grillenberger-type”
subshifts exhibited by Cassaigne-Nicolas in §4.4.3 of [7], to the results of Méla-Petersen [11] for the
Pascal-adic subshift, and also towards unique ergodicity results “à la Boshernitzan” for subshifts
of infinite alphabet rank.

4. What really is the true nature of a subshift ?

The free monoid A˚ over the alphabet A “ ta
1

, . . . , adu embeds canonically into the free group
F pAq over A. But contrary to A˚, where the minimal generating system A is uniquely determined
by A˚, in F pAq there are infinitely many sets B “ tw

1

, . . . , wdu Ñ F pAq with canonical isomor-
phisms F pBq – F pAq – Fd, and none of these bases for the free group Fd of rank d • 2 is preferred
in any way. Any subshift X over A gives canonically rise (by passing to the language LpXq) to a
“subshift with inverses” over B, which has led to the basis-free notion of an algebraic lamination

in Fd (see [8]), together with a canonical embedding ⌃pAq Ñ ⇤pF pAqq of the space of subshifts
⌃pAq into the space of algebraic laminations ⇤pF pAqq. Similarly, the space of invariant measures
MpAZq embeds canonically into the space of currents MpF pAqq.

ASIDE: Symbolic dynamists feel traditionally uneasy about the behavior of inverses under mor-
phisms, but this is mainly due to the fact that the notion of train track maps has not yet dissipated
into the symbolic dynamics community. With this tool the whole S-adic machinery as well as most
other symbolic dynamics methods and results could (and should) be carried over from symbolic
dynamics to geometric group theory.

There is also a “response” from geometric group theory towards symbolic dynamics, namely that
any property of a subshift which is not invariant under change of basis is not accepted as “intrinsic”
property, just like properties of matrix groups are not intrinsic properties of the group in question if
they are not invariant under group isomorphisms, or similarly for properties of topological objects,
if they depend on the embedding of the object in an ambient space (like the well known “2-sided
coloring” criterion for a surface to be orientable or not).

To stay within symbolic dynamics terminology I’d like to make this a bit more precise:

Definition 4.1. A property of a subshift X Ñ AZ is said to be intrinsic if, first, for any monoid
morphisms � : A˚ Ñ B˚ which is recognizable in X, the property must also hold for the subshift
�pXq Ñ BZ. Second, for any monoid morphism �

1 : C˚ Ñ A˚ and any subshift Y Ñ CZ with
�

1pY q “ X, if �1 is recognizable in Y , then the property must also hold for Y .

Examples of intrinsic properties are minimality, unique ergodicity, the number epXq of ergodic
probability measures, the statements hX “ 0 or hX ° 0, and the growth-type of the complexity
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function pXp¨q . The value of hX ° 0 however is not intrinsic, and neither is the complexity function
itself (and not even its equivalence class ⇥ppXq, see [10]).

5. Classification of substitutive subshifts

The speaker has very recently discovered (in the context of investigating a certain type of free
group automorphisms) a new computable invariant for any minimal substitutive subshift, which
consists of a cyclic sequence of finite graphs and graph maps between them. This invariant ap-
pears to be (work in progress) a characterizing invariant of the given subshift, up to recognizable
morphisms as in Definition 4.1.

The technicalities of the graphs in question are not yet matured enough to be presented here
(other than via the examples given in the Annex below), but the main idea ought to be conveyed
anyway:

For any n • 0 the level 2n Rauzy graph R

2npXq of a subshift X Ñ A can be reinterpreted as
obtained in the following way: One first realizes X graphically as a (typically infinite) collection
of lines �pxq, one for every x P X, subdivided as biinfinite edge path, with edges labeled by letters
from A according to the letters xk on x “ . . . x´1

x

0

x

1

. . .. In a second step we identify any two
vertices P P �pxq and Q P �px1q i↵ the finite sub-edge-paths of length 2n on x and on x1, centered
at P and Q respectively, read o↵ the same word. Finally, to get the finite graph R

2npXq we need to
identify any two edges with same endpoints and same label. The subshift X can then be read o↵
from suitable edge paths in R

2npXq, and X is characterized by the fact that this “read-o↵ property”
holds for any n • 1. Another pay-o↵ of this alternative construction are canonical label-preserving
graph morphisms R

2mpXq Ñ R

2npXq for any m • n • 0, which define in turn a canonical S-adic
Rauzy development of X which is always totally recognizable. Locally, each of these label-preserving
graph morphisms is a composition of vertex-identifications and edge-foldings.

In the special case where X is the subshift generated by a primitive substitution �, we can use
the incidence matrix Mp�q and one of its (left) row PF-eigenvectors ~v

˚, in order to define from
the coe�cients of ~v ˚ a length function L on the letters of A (and thus by summation on all of A˚)
which satisfies Lp�paiqq “ �Lpaiq for each ai P A, where � ° 1 is the PF-eigenvalue of Mp�q.

We can now repeat the above definition of the Rauzy graphR

2npXq, but replace the combinatorial
length used there (when considering for the vertex identification the 2n-length sub-edge-paths) by
the length L, and apply the identification device not just to vertices but also to points in the interior
of edges (with “read-o↵ equality of sub-edge-paths” refined by passing to �-iterates of those paths).

This gives a continuity of graphs Rp~v ˚q, one for any positive eigenvector ~v ˚ within the uniquely
determined PF-eigen-direction of Mp�q, and for ~v

2̊

“ �~v

1̊

the corresponding graphs are related
by a graph isomorphism Rp~v

1̊

q Ñ Rp~v
2̊

q which stretches every edge by the factor �. The compo-
sition Rp~v

1̊

q Ñ Rp~v
2̊

q Ñ Rp~v
1̊

q of this homothetic graph isomorphism with the above “vertex-
identification & edge-folding” map Rp~v

2̊

q Ñ Rp~v
1̊

q is a topological realization of some substitution
�

1 which generates X.
To get to the desired finite cycle of graphs we have to discretize the just obtained continuous

“loop of graphs” in a canonical way. There are several possibilities for this canonical discretization
(all built on periodic points of the composed maps Rp~v

1̊

q Ñ Rp~v
2̊

q Ñ Rp~v
1̊

q, see the examples in
the Annex below), and the choice of the most natural among them is one of the problems still on
my desk.
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