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1. GOALS OF MY TALK

There are several purposes for this talk:

(1) Explain and advertise the methods the author has developed in collaboration with Nicolas
Bédaride and Arnaud Hilion over a series of papers in the past 10 years.

(2) Present 2 non-evident results (about the existence of “many” invariant measures) which
have been proved by these methods.

(3) Give a bit of “moral” input from somebody outside the symbolic dynamics main stream.

(4) [if time permits] Give a glimpse about a very new result about the characterization of
substitutive subshifts.

2. STANDARD AND NOT SO STANDARD BASICS

2.1. Subshifts and their languages.

We always denote by A = {a1,...,aq} (or by An = {a1,...,aqm)} or B={b1,...,bgp}) a finite
alphabet, and by A* the free monoid over A. Let A% be the set of biinfinite words x = ... z_jzoz1 ...
with zp € A, equipped with the shift operator T : A* — A% where T(x) arises from x by
subtracting 1 from the index k of any of the letters zj. The set O(x) = {T"(x) | n € Z} < A% is
the shift-orbit of x.

A subshift X over A is a subset X < A”? which is non-empty, T-invariant and closed (in the
product topology of A% with respect to the discrete topology on A). We denote by ¥(A) the set
of all subshifts X < AZ.

A subshift X < A? is minimal if it is a minimal element of Y(.A) with respect to the inclusion;
equivalently, for any x € X one recovers X as closure of O(x) in A”.

For every subshift X we denote by £(X) < A* the language of X, where w = wy ... wy, € L(X)
iff for some x € X one has 1 = wy, ...,z = wy,. Conversely, by virtually the same rule we see
that any infinite set £ < A* determines a subshift X (£), with X (£(X)) = X and L(X (L)) < L,
where equality holds if £ is subshift language.

Hence subshifts and subshift languages determine each other vice versa. BUT: The union of
infinitely many subshifts may not be closed and hence not be a subshift, while the union of infinitely
many subshift languages is always a subshift language. Conversely, the intersection of infinitely
many subshifts, if non-empty, is always a subshift, while the intersection of subshift languages, even
if assumed to be infinite, may well not be a subshift language.

The topological entropy hx of a subshift X < AZ is defined via

log #{w € L(X) | |w| = n}

hx = lim ,
n—00 n

where |w| denotes the length (= the number of letters) of the word w € A*.
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2.2. Morphisms and the “image subshift”.

Let A and B be finite alphabets, and let o : A* — B* be a monoid morphism. All of our monoid
morphisms are assumed to be non-erasing, by which we mean that no a; € A may be mapped to
the empty word € € B*.

The morphism o determines an incidence matrix

M(o) = (lo(aj)le;)bieB,a;en

where for any v, w € B* we denote by |wl|, the number of occurrences of the word v as factor (=
subword) in w.

Via biinfinite prolongation the morphism o induces a map o : A% — BZ, but the set o%(A%) <
B% will in general not be closed under the shift operator T on B%. Nevertheless, for any shift-orbit
O(x) < A” there is a well defined image orbit o (O(x)) := O(c%(x)) < B~.

Any monoid morphism o : A* — B* (always assumed to be non-erasing !) induces a subshift
map

o” :2(A) - 2(B), X — o(X),

where for every subshift X < A% the image subshift 0(X) := 0¥(X) is defined as the union of
the image orbits of the orbits of X (which is always closed !). Equivalently, we can set o(X) =
X(0(£(X))). The subshift o(X) is also the smallest subshift which contains the set ¢%(X), which
is in general not a subshift and may not be confused with the image subshift o(X).

2.3. Recognizability.

A monoid morphism ¢ : A* — B* is recognizable in a subshift X < A% if, roughly speaking,
every biinfinite word y of the image subshift Y = o(X) < B? can be lifted (“desubstituted”) in
precisely one way to a preimage word x € X. The precise definition is technical and a bit tedious,
but one can show:

Lemma 2.1 ([5]). (1) If X is aperiodic (< X does not contain any ...www...), then o is
recognizable in X if and only if the induced map o© is injective on the set of shift-orbits of X .

(2) If some ... www... is contained in X, then one has to require in addition that, if o(w) is a
proper power (i.e. o(w) = v™ for some m = 2), then so is w.

2.4. Invariant measures and the measure transfer.

An invariant measure p on a subshift X < A% is a Borel measure on A% which is invariant under
the shift operator T" and has support in X. The set of such invariant measures is denoted by M (X),
which is a cone in that it possesses a canonical Rsg-linear structure. We say that p € M(X) is
probability if u(X) = 1. The support of any non-zero p € M(X) is a subshift X’ < X.

The set M(X) embeds canonically into the infinite dimensional vector space RA* via p —
(([w]))weax, where the cylinder [w] < A% denotes the set of all biinfinite words x € A% with
mono-infinite positive half-word that starts with w. From the embedding M(X) < RA" the
set M(X) inherits the product topology, which agrees with the more generally known (but less
practical) weak*-topology.

A measure p € M(X) is ergodic if it can not be written as non-trivial linear combination within
M(X) (i.e. p is an extremal point of M(X)). Ergodic probability measures are always linearly
independent, so that the existence of m > 1 distinct ergodic probability measures on X assures us
that dim M(X) = m (and conversely).

For any subshift X < A% we consider the map

Cx s M(X) = RSy, p G
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where the letter frequency vector t* for any invariant measure p is given by v := (u([a1]), - . ., p([aq]))-
We denote by C(X) := (x(M(X)) € R4 the Rsg-linear cone which is image of the map (x. Note
that for any ue M(X) we have u(X) = 3, c 4 p([ai]).
For any monoid morphism ¢ : A* — B*, any subshift X < A% and any measure y € M(X) there
is a well defined transferred measure p° € M(o(X)), and the issuing map
¥ M(X) = M(a (X)), o i

has the following properties, for any © e M(X) (see [5], [4]):

(1) J)A{‘ is R>o-linear.

(2) JX is continuous.
(3) UX is surjective.
(4) 0% is injective, if o is recognizable in X. (Indeed, it suffices that o is injective in X.)
(5) The support of u7 is equal to the image subshift of the support of .
(6) The letter frequency vector 7#° of the transferred measure ;% is derived from the letter

frequency vector v# of u by the linear map

it 5 = M(o)-T".

(7) If p is ergodic, then so is u°.
(8) For any w € A* the cylinder measures satisfy p7([o(w)]) = u([w]).
(9) For any v € B* the value of u?([v]) can be computed (by hand) via a fairly elegant formula
from the values of the pu([w]) of any w € A* with |w| < |v| + 2.
(10) For any non-empty w € A* the atomic measure i, (Which is zero outside the orbit of
...www... and satisfies p1,,(A%) = |wl|) is mapped by 4! to the atomic measure o (w)-
(11) In partlcular for a probability measure p the transferred measure pu will in general not be
probability.

2.5. S-adic expansions and vector towers.

A backwards infinite ( “directive”) sequence of monoid morphisms & = (o, : A% | — A¥)n>0
is said to be everywhere growing if the value f_(n) := min{|ogo...o00op-1(a;)| | a; € An} (= the
minimal level letter length) tends to oo for n — oo. With this (throughout the sequel assumed)
hypothe51s the sequence & defines the subshift X¢ := X (£(7)) S A% as generated by the language

L(T):= U{ooo...0on_1(ai) | a; € Ap}. The directive sequence 7 is an S-adic expansion (or
n=0

S-adic development) of a subshift X < AZ if one has A = Ag and X = X4

For any ng = 0 the truncated directive sequence @ Tp, := (0pn)n>n, generates the level ng subshift
Xno 1= Xvt,,, and one has oy, (Xn+1) = X, for all n = 0. We thus obtain the infinite commutative
diagram

erl oM O'n/vll O'{Vl O'é\/l
T M(Xnn) T M(X) TS TS M) TS M(x)
! CXn+1 | CXn | CXI | CX
M) o) M o) M) MO o) M9 e

where (an)ﬁ‘{i ., has been abbreviated to oM.

From the above surjectivity of the measure transfer map we know that for every pu € M(Xg)
there exists for any n > 0 a measure u,, € M(X,,) (with pp = p) such that together they form a
measure tower (fin)n>0 on @ in that p, = py", for all n > 0. Via the above maps (x, we deduce
a vector tower (Up)n=o on G (i.e. U, = M(0y,) - Ups1 for all n = 0) by setting ¢, = 7#" to be the
letter frequency vector of p, (as defined above).
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If the sequence @ is totally recognizable (i.e. every o, is recognizable in X,,;1) then y determines
uniquely the measure tower (i, )n>0 and hence the vector tower (¥,),>0. Without that hypothesis
we still have:

Theorem 2.2 ([2],[4]). For any everywhere growing directive sequence G every vector tower

(Up)n=0 on @ is derived (as letter frequency vectors) from some measure tower (pn)n=0 on 7.
In particular, every vector tower U = (Un)ns0 on T determines an invariant measure u” = g
on the subshift Xo. The issuing map ms : T — p@ from the set of vector towers on & to M(X)
1s Rxq-linear and surjective.

As a consequence, we observe that the family of incidence matrices for the level maps of any S-adic
development of a subshift X determines the measure cone M(X), up to Rx¢-linear isomorphisms.
To finish this subsection we quote two well known criteria (see [6]) for subshifts X by means of
any S-adic expansion (o, : A%, | — A¥),>0 of X, both stated here only for the case needed below:

Proposition 2.3. If for infinitely many integers n = 0 the incidence matriz M (o) is positive,

then X s minimal.

Proposition 2.4. If the (above defined) minimal level letter length B_(n) satifies lim W =
n—oo -

0, then X has topological entropy hx = 0.

3. SUBSHIFTS WITH MANY ERGODIC MEASURES

For any integer d > 1 we now consider for an arbitrary parameter ¢ € R>y the d x d-matrix
Mg(€) := £-1dgxgq + 1gxa, where 1454 is the “Attila matrix” with all entries equal to 1. We observe
that the d-dimensional center vector ¢; (also with all entries equal to 1) satisfies My(¢)cy = (+d)cy,
while for the k-th coordinate unit vector €j we obtain My(¢)ey = ley + ¢; . Hence the 2-dimensional
Rxp-subcone spanned by ¢; and €j, is mapped into itself, where the extremal direction of ¢ is
fixed, while the other extremal direction, given by €}, is mapped arbitrarily close to itself by
choosing the parameter ¢ sufficiently large. It follows directly that for any sufficiently fast growing
sequence of parameters £(n) > 0 the nested infinite intersection ... £ C? < C' < € of the cones
C™ = My(€(0)) - ...  Mq(¢(n)) -RZ, has dimension d. This shows (invoking also Proposition 2.4):

Theorem 3.1 ([3]). For any integer d = 1 with alphabet Ay = {a1,...,aq}, and for any sufficiently
fast growing family of positive integers (£(n))n=o0, the subshift X < Ag generated by the directive
sequence (oq(f(n)) : A — Af)n=0, with o4(l(n)) : ap — ai(n)alag co.aq forallk =1,...,d, is
minimal and possesses d distinct invariant ergodic probability measures.

[In [3] it is also shown that the above sequence of the morphisms o4(£(n)) can be refined to a

sequence of morphisms o, : Aj — A% where each o, belongs to an a priori given set S of finitely
many (indeed 4 suffice) substitutions.]

We now use the same basic method to produce a large family of subshifts X with a bit of an exotic
combination of properties, as X is “small” in that X is minimal and has entropy hx = 0, while
simultaneously X is “large” since it carries infinitely many invariant ergodic probability measures.
The first such families have recently been established by V. Cyr and B. Kra in [9].

For this purpose we define for every d > 2 the morphism 745 : A7, — Aj via ap — az if

k=1,...,d and agy1 — ajas...aq. The exponent 2 is used in showing that 74 is recognizable in
any subshift X < .Ag +1 which does not contain any of the periodic words ...agaxag . ... Similarly,

the morphisms o4(¢) from Theorem 3.1 are recognizable in the full shift A%, if £ > 2. It follows
that the composition o4(f) o 74 induces a measure transfer map (c4(¢) o 74)%! which is injective for
any aperiodic subshift X < A7 ;.
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We now observe that, again, for any d > 2 the d x (d + 1)-matrix M/ (¢) := M (cq(¢) o 74) maps
C4+1 to a multiple of ¢y, and €}, (for 1 < k < d) to some A\ég + N ¢y, with \/\ large for large ¢. Hence
the same arguments as before show that, for any fixed d > 2 and varying large n > d, the subcone of
RZ{" spanned by €1, ..., €, has for the products M} (£4(d)) - M}y, (€a(d+1))-...- M} (€4(n)) nested
image-cone intersection “from infinity” of dimension d, provided that the parameters ¢;(n) grow
fast enough for n — co. Setting ¢(n) := max{f2(n),f3(n),...,¢,(n)} we obtain from the above
injectivity of the measure transfer and from the criteria in Propositions 2.3 and 2.4 the desired
conclusion:

Theorem 3.2 ([4], Thm. 7.4). For any sufficiently fast growing family of positive integers (£(n))n>2
the subshift X < A% generated by the directive sequence (o,,(£(n))oT,)n>2 possesses infinitely many
distinct tnvariant ergodic probability measures. Furthermore X is minimal and has entropy hx = 0.

The method presented here admits many more applications, both with respect to showing unique
ergodicity as well as showing the existence of infinitely many ergodic probability measures. Pre-
liminary calculations of the speaker indicate the possibility of such applications for instance to the
Avila-Damanik-Zhang counter-examples to the Simon conjecture in [1], to the “Grillenberger-type”
subshifts exhibited by Cassaigne-Nicolas in §4.4.3 of [7], to the results of Méla-Petersen [11] for the
Pascal-adic subshift, and also towards unique ergodicity results “a la Boshernitzan” for subshifts
of infinite alphabet rank.

4. WHAT REALLY IS THE TRUE NATURE OF A SUBSHIFT 7

The free monoid A* over the alphabet A = {a1,...,aq} embeds canonically into the free group
F(A) over A. But contrary to A*, where the minimal generating system A is uniquely determined
by A*, in F(A) there are infinitely many sets B = {w1,...,ws} < F(A) with canonical isomor-
phisms F(B) =~ F(A) = F;, and none of these bases for the free group F, of rank d > 2 is preferred
in any way. Any subshift X over A gives canonically rise (by passing to the language £(X)) to a
“subshift with inverses” over B, which has led to the basis-free notion of an algebraic lamination
in Fy (see [8]), together with a canonical embedding X(A) — A(F(A)) of the space of subshifts
Y(A) into the space of algebraic laminations A(F(A)). Similarly, the space of invariant measures
M(AZ%) embeds canonically into the space of currents M(F(A)).

ASIDE: Symbolic dynamists feel traditionally uneasy about the behavior of inverses under mor-
phisms, but this is mainly due to the fact that the notion of train track maps has not yet dissipated
into the symbolic dynamics community. With this tool the whole S-adic machinery as well as most
other symbolic dynamics methods and results could (and should) be carried over from symbolic
dynamics to geometric group theory.

There is also a “response” from geometric group theory towards symbolic dynamics, namely that
any property of a subshift which is not invariant under change of basis is not accepted as “intrinsic”
property, just like properties of matrix groups are not intrinsic properties of the group in question if
they are not invariant under group isomorphisms, or similarly for properties of topological objects,
if they depend on the embedding of the object in an ambient space (like the well known “2-sided
coloring” criterion for a surface to be orientable or not).

To stay within symbolic dynamics terminology I'd like to make this a bit more precise:

Definition 4.1. A property of a subshift X < A? is said to be intrinsic if, first, for any monoid
morphisms o : A* — B* which is recognizable in X, the property must also hold for the subshift
o(X) € B%. Second, for any monoid morphism ¢’ : C* — A* and any subshift Y < C% with
o'(Y) = X, if ¢/ is recognizable in Y, then the property must also hold for Y.

Examples of intrinsic properties are minimality, unique ergodicity, the number e(X) of ergodic
probability measures, the statements hx = 0 or hx > 0, and the growth-type of the complexity
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function px (). The value of hx > 0 however is not intrinsic, and neither is the complexity function
itself (and not even its equivalence class ©(px), see [10]).

5. CLASSIFICATION OF SUBSTITUTIVE SUBSHIFTS

The speaker has very recently discovered (in the context of investigating a certain type of free
group automorphisms) a new computable invariant for any minimal substitutive subshift, which
consists of a cyclic sequence of finite graphs and graph maps between them. This invariant ap-
pears to be (work in progress) a characterizing invariant of the given subshift, up to recognizable
morphisms as in Definition 4.1.

The technicalities of the graphs in question are not yet matured enough to be presented here
(other than via the examples given in the Annex below), but the main idea ought to be conveyed
anyway:

For any n > 0 the level 2n Rauzy graph Ra,(X) of a subshift X < A can be reinterpreted as
obtained in the following way: One first realizes X graphically as a (typically infinite) collection
of lines 7(x), one for every x € X, subdivided as biinfinite edge path, with edges labeled by letters
from A according to the letters z on x = ...x_120%1.... In a second step we identify any two
vertices P € v(x) and @ € v(x') iff the finite sub-edge-paths of length 2n on x and on x’, centered
at P and @ respectively, read off the same word. Finally, to get the finite graph Ra,(X) we need to
identify any two edges with same endpoints and same label. The subshift X can then be read off
from suitable edge paths in Rg, (X ), and X is characterized by the fact that this “read-off property”
holds for any n > 1. Another pay-off of this alternative construction are canonical label-preserving
graph morphisms R, (X) — Ro,(X) for any m > n > 0, which define in turn a canonical S-adic
Rauzy development of X which is always totally recognizable. Locally, each of these label-preserving
graph morphisms is a composition of vertex-identifications and edge-foldings.

In the special case where X is the subshift generated by a primitive substitution o, we can use
the incidence matrix M (o) and one of its (left) row PF-eigenvectors ¥*, in order to define from
the coefficients of ¥'* a length function L on the letters of A (and thus by summation on all of A*)
which satisfies L(o(a;)) = AL(a;) for each a; € A, where X\ > 1 is the PF-eigenvalue of M (o).

We can now repeat the above definition of the Rauzy graph Ra, (X)), but replace the combinatorial
length used there (when considering for the vertex identification the 2n-length sub-edge-paths) by
the length L, and apply the identification device not just to vertices but also to points in the interior
of edges (with “read-off equality of sub-edge-paths” refined by passing to o-iterates of those paths).

This gives a continuity of graphs R(¢'*), one for any positive eigenvector ¥* within the uniquely
determined PF-eigen-direction of M (o), and for ¥5* = A" the corresponding graphs are related
by a graph isomorphism R(#7*) — R(¥5") which stretches every edge by the factor A\. The compo-
sition R(v7*) — R(v5*) — R(¥1*) of this homothetic graph isomorphism with the above “vertex-
identification & edge-folding” map R(v5*) — R(07*) is a topological realization of some substitution
o’ which generates X.

To get to the desired finite cycle of graphs we have to discretize the just obtained continuous
“loop of graphs” in a canonical way. There are several possibilities for this canonical discretization
(all built on periodic points of the composed maps R(71*) — R(95*) — R(01*), see the examples in
the Annex below), and the choice of the most natural among them is one of the problems still on
my desk.
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6. ANNEX

Below we draw the characteristic graph morphism cycles for (a) the Fibonacci subshift and (b)
the Thue-Morse subshift. Each of the two cycles consists of 3 graphs and 3 graph morphism, where
two of the morphisms drawn from left to right, and the last one, from the right-most graph back
to the left-most graph, is a graph isomorphism. The vertices are highlighted by symbols (square,
heart, ...) which are preserved by the “from-left-to-right” maps and permuted (as indicated) by
the “from-right-to-left” isomorphisms. The bold symbols correspond to periodic vertices, while
the outlined ones are only pre-periodic. Edges are always mapped to edges, and if two edges are
mapped to the same edge this is indicated by colors.

{

(a) Fibonacci

(b) Tue-Morse
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