
Combinatorial problems on closed and privileged
words

Daniel Gabrić
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Basic Definitions: Bordered and Unbordered words

Definition A word u is said to be a border of a word w if u is a nonempty
proper prefix and suffix of w.

Note: Sometimes borders are allowed to be any prefix that is a suffix.

Definition A word w is said to be bordered if it has a border. Otherwise,
it is said to be unbordered.

The word alfalfa is bordered. It has two borders alfa, and a.

The word bordered is in fact unbordered. It has no valid borders.
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Basic Definitions: Closed and Privileged words

Definition We say that a word w is closed by a word u if u is a border of
w and it occurs exactly twice in w.

Definition A word w is said to be closed if |w| ≤ 1 or if w is closed by
some word.

Definition A word w is said to be privileged if |w| ≤ 1 or if w is closed by
a privileged word.

The English word bonobo is a closed word, closed by bo. Since |bo| > 1 and
bo is unbordered and therefore not privileged, we have that bonobo is not
privileged.

The French word entente is closed by ente. Furthermore ente is closed by
e. But |e| ≤ 1, so ente is privileged and therefore so is entente.
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Background: Closed and Privileged words

Closed words were first defined by Fici (2011) as a way to classify Trapezoidal and
Sturmian words.

However, there are a few different names for closed words that were introduced
earlier.

Closed words are also called periodic-like words, first defined by Carpi and de Luca
(2001).

▶ A period of a word w = w1w2 · · ·wn is an integer p ≤ n such that
wi = wi+p for all 1 ≤ i ≤ n− p.

▶ A length-n word is said to be periodic if it has a period of length ≤ n/2.

In the analysis of DNA sequences, and other long words, the minimal period is
generally much larger than half the length of the word.

Periodic-like words were considered as a generalization of periodic words that
preserve some features of periodic words.
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Background: Closed and Privileged words

Closed words also appear in frame synchronization applications dating back to
1960.

▶ There is a 1-1 correspondence between closed words and codewords in
prefix-synchronized codes.

Closed words are also known as complete first return words.

▶ A complete first return to a word u is a word that starts and ends with u,
and contains exactly two occurrences of u.

▶ A word is closed if it is a complete first return to one of its non-empty proper
prefixes.

Privileged words were originally defined by Kellendonk et al. (2011) in the context
of dynamical systems and discrete geometry by iterating the definition of a
complete first return.

A word is privileged if and only if it is the empty word, a single letter, or a
complete first return to a shorter privileged word.
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Combinatorial Problems

For the rest of this talk, we implicitly assume that all words are over a k-letter
alphabet for some k ≥ 2.

We will explore some results and open questions related to the following three
combinatorial problems.

1. Enumeration

new results! open problems!

Can we efficiently count the number of length-n closed words or length-n
privileged words? If not, can we find good asymptotic bounds for these
numbers?

2. Ranking/Unranking

no results. open problems!

Given a listing of closed or privileged words, can we efficiently compute the
position of a specific element? Can we find an element given its position?

3. Generation

partial results. open problems!

Can we efficiently list all closed or privileged words in any order? In a specific
order?
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Enumeration

Let Ck(n) (resp. Pk(n)) denote the number of length-n closed (resp. privileged)
words over a k-letter alphabet.

It seems hard to count Ck(n) and Pk(n) exactly (and quickly), so most research
has been dedicated to finding good upper and lower bounds for them.

Every privileged word is also closed, so Pk(n) ≤ Ck(n).

In 2016, Forsyth et al. showed that

P2(n) ∈ Ω

(
2n

n2

)
.

In 2018, Nicholson and Rampersad showed that

Pk(n) ∈ Ω

(
kn

n(logk(n))
2

)
.
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Problem: Enumeration

In 2020, Rukavicka proved the very first nontrivial upper bounds on privileged and
closed words. He showed that

Ck(n) ∈ O

(
lnn

kn

√
n

)
.

In 2022, Rukavicka improved his upper bound on privileged words by showing that
for every j ≥ 3,

Pk(n) ∈ O

(
kn

√
lnn√
n

ln◦j(n)

j−1∏
i=2

√
ln◦i(n)

)

where ln◦0(n) = n and ln◦j(n) = ln(ln◦j−1(n)).
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Heuristic Argument

What is the true bound for Ck(n)? We give a heuristic lower bound argument.

Consider a “random” length-n word w.

Let ℓ = logk(n) + c for some constant c.

There is a 1
kℓ = 1

kcn
chance that w has a length-ℓ bordered.

If w has a length-ℓ border u, then drop the first and last character of w to
get w′.

If w′ were randomly chosen (which it is not), then by the linearity of
expectation, the expected number of occurrences of u in w′ is approximately
(n− 1− ℓ)k−ℓ ≈ k−c.

For c large enough we have that u does not occur in w′ with high probability,
so w is closed.

There are at least approximately kn−ℓ ∈ Θ
(

kn

n

)
length-n closed words.
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Enumeration Results

Theorem

For any integer k ≥ 2, we have Ck(n) ∈ Θ
(

kn

n

)
.

Theorem

Let k ≥ 2 be an integer. Let log◦0k (n) = n and log◦jk (n) = logk(log
◦j−1
k (n))

for j ≥ 1.

For all j ≥ 0, we have

Pk(n) ∈ Ω

(
kn

n log◦jk (n)
∏j

i=1 log
◦i
k (n)

)
and

Pk(n) ∈ O

(
kn

n
∏j

i=1 log
◦i
k (n)

)
.

D. Gabrić, Asymptotic bounds for the number of closed and privileged words, E-JC, Vol. 32 (2024) #P2.45
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D. Gabrić, Asymptotic bounds for the number of closed and privileged words, E-JC, Vol. 32 (2024) #P2.45

10 / 33

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i2p45


Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Let Bk(n, u) denote the number of length-n words closed by the word u.

Lower Bound

Nicholson and Rampersad (2018) showed that there are Ω
(

kn

n2

)
length-n

words that are closed by a word of length “around” logk(n).

In other words, they showed that Bk(n, u) ∈ Ω
(

kn

n2

)
for |u| ≈ logk(n).

There are Ω(n) words of length ≈ logk(n).

Therefore, there are Ω
(

kn

n

)
length-n closed words.

11 / 33



Proof Sketch: Closed words

Upper Bound

Notice that every closed word is closed by its longest border.

We can therefore partition all closed words into sets based on the lengths of
their longest borders.

Let Ck(n, t) denote the number of length-n closed words that have a longest
border of length t.

We have

Ck(n) =

n−1∑
t=1

Ck(n, t).

We consider two cases, one where longest border is of length t > ⌊n/2⌋ and
the other where the length is t ≤ ⌊n/2⌋.
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Proof Sketch: Closed words

Upper Bound

If t ≥ ⌊n/2⌋, then there are at most nk⌈n/2⌉ such words.

Each such word is determined by its minimal period, which is of length
n− t ≤ ⌈n/2⌉ and there are less than n such periods.

If t ≤ ⌊n/2⌋, then the borders do not “overlap”.

Thus, for any length-n closed word w closed by a length-t word u, we can
write w = uvu.

The word u can be any length-t word, and the word v is a word of length
n− 2t that does not contain u as a factor.

▶ The word v has some extra constraints which are unimportant in
proving an upper bound.

u v u

any length-t word a word of length n− 2t
avoiding u
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Proof Sketch: Closed words

Upper Bound

Let Ak(n, u) denote the number of length-n words avoiding u as a factor.

u v u

kt such words Ak(n− 2t, u) such words

We can upper bound Ck(n, t) by
∑

|u|=t

Ak(n− 2t, u).

We now need to find an upper bound for Ak(n− 2t, u).

A crucial result by Guibas and Odlyzko (1981) shows that
Ak(n, u) ≤ Ak(n, 0

|u|) for all n ≥ 1.

Which means
Ck(n, t) ≤ ktAk(n− 2t, 0t).

14 / 33



Proof Sketch: Closed words

Upper Bound

Let Ak(n, u) denote the number of length-n words avoiding u as a factor.

u v u

kt such words Ak(n− 2t, u) such words

We can upper bound Ck(n, t) by
∑

|u|=t

Ak(n− 2t, u).

We now need to find an upper bound for Ak(n− 2t, u).

A crucial result by Guibas and Odlyzko (1981) shows that
Ak(n, u) ≤ Ak(n, 0

|u|) for all n ≥ 1.

Which means
Ck(n, t) ≤ ktAk(n− 2t, 0t).

14 / 33



Proof Sketch: Closed words

Upper Bound

Let Ak(n, u) denote the number of length-n words avoiding u as a factor.

u v u

kt such words Ak(n− 2t, u) such words

We can upper bound Ck(n, t) by
∑

|u|=t

Ak(n− 2t, u).

We now need to find an upper bound for Ak(n− 2t, u).

A crucial result by Guibas and Odlyzko (1981) shows that
Ak(n, u) ≤ Ak(n, 0

|u|) for all n ≥ 1.

Which means
Ck(n, t) ≤ ktAk(n− 2t, 0t).

14 / 33



Proof Sketch: Closed words

Upper Bound

For t = 1, we have Ak(n, 0
t) = (k − 1)n for all n ≥ 0

For t ≥ 2, the sequence (Ak(n, 0
t))n≥0 is exactly the t-bonacci sequence,

which has the following two well-known recurrences:

Ak(n, 0
t) =

kn, n < t;

(k − 1)
t∑

i=1

Ak(n− i, 0t), n ≥ t.

Ak(n, 0
t) =


kn, n < t;

kn − 1, n = t;

kAk(n− 1, 0t)−Ak(n− 1− t, 0t), n > t.

Using these recurrences, one can show that Ak(n, 0
t) ≤ (k − (k − 1)k−t−1)n

for all t ≥ 2, n ≥ 1.
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Proof Sketch: Closed words

Upper Bound

We end up with

Ck(n) =

n−1∑
t=1

Ck(n, t) ≤ (k− 1)n +nk⌈n/2⌋ +

⌊n/2⌋∑
t=2

kt(k− (k− 1)k−t−1)n−2t

Using standard techniques, which are uninteresting for the purpose of this
talk, one can show that there is some constant N > 0 such that

Ck(n) ≤ c
kn

n

for all n > N where c > 0 is some constant which depends on k.
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Proof Sketch: Privileged words

Since every privileged word is also a closed word, we have that a privileged word is
also closed by its largest border (which must be privileged).

We can write, similar to the closed case, that

Pk(n) =

n−1∑
t=1

Pk(n, t)

where Pk(n, t) is the number of length-n privileged words with longest border of
length t.

Lower Bound

Consider a privileged word w of length n with longest border u of length
t ≈ logk(n).

For n large enough, we can write w = uvu for some word v.

u v u

u privileged Bk(n, u) such words v
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Proof Sketch: Privileged words

Lower Bound

We have
Pk(n, t) =

∑
|u|=t and u privileged

Bk(n, u).

By Nicholson and Rampersad (2018), we have Bk(n, u) ∈ Ω
(

kn

n2

)
for

|u| ≈ logk(n), and so

Pk(n) ≥ Pk(n, t) ≥
∑

|u|=t and u privileged

c
kn

n2
= cPk(t)

kn

n2

for all n large enough, where c > 0 is some constant, and t ≈ logk(n).

We get the lower bound by iteratively applying the above recursive inequality.

We can prove by induction that:

Pk(n) ≥ c0Pk(logk(n))
kn

n2
≥ c1Pk(logk(logk(n)))

kn

n(logk(n))2
≥ . . .

≥ cj
kn

n log
◦j
k

(n)
∏j

i=1 log◦i
k

(n)
.
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Proof Sketch: Privileged words

Upper Bound

Similar to the upper bound proof for closed words, we split the sum

Pk(n) =

n−1∑
t=1

Pk(n, t)

into two separate sums, one where t > ⌊n/2⌋ and one where t ≤ ⌊n/2⌋.

The same reasoning as in the closed words case shows that there are at most
nk⌈n/2⌉ length-n privileged words with a longest border of length t > ⌊n/2⌋.

When t ≤ ⌊n/2⌋, we have that the longest borders do not overlap.

For any length-n privileged word closed by a length-t privileged word u, we
can write w = uvu.

u v u

any privileged word
of length t

a word of length n− 2t
avoiding u
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Proof Sketch: Privileged words

Upper Bound

u v u

Pk(t) such words Ak(n− 2t, u) such words

We already have an upper bound on Ak(n− 2t, u) from before, so we get the
following recursive upper bound:

Pk(n, t) ≤
∑

|u|=t and u privileged

Ak(n− 2t, u) ≤
∑

|u|=t and u privileged

Ak(n− 2t, 0t)

≤ Pk(t)(k − (k − 1)k−t−1)n−2t.

We can show by induction on j, that

Pk(n) ≤ cj
kn

n
∏j

i=1 log
◦i
k (n)

for all n large enough where cj > 0 is some constant, and the base case when

j = 0 is Pk(n) ≤ Ck(n) ∈ O
(

kn

n

)
.
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Open Problems

Let ℓn denote the smallest positive integer such that log◦ℓn+1
k (n) ≤ 1.

Define

log∗k(n) :=

ℓn∏
j=1

log◦jk (n).

Conjecture

For all k ≥ 2, we have

Pk(n) ∈ Θ

(
kn

n log∗k(n)

)
.

This should be provable by a careful analysis of the multiplicative constants
introduced in the proofs of the upper and lower bounds of Pk(n).

21 / 33



Open Problems

Let ℓn denote the smallest positive integer such that log◦ℓn+1
k (n) ≤ 1.

Define

log∗k(n) :=

ℓn∏
j=1

log◦jk (n).

Conjecture

For all k ≥ 2, we have

Pk(n) ∈ Θ

(
kn

n log∗k(n)

)
.

This should be provable by a careful analysis of the multiplicative constants
introduced in the proofs of the upper and lower bounds of Pk(n).

21 / 33



Open Problems

Open Question

Does the limit

lim
n→∞

Ck(n)n

kn

exist?

There is reason to think that this limit does not exist.

A prefix-synchronized code of length n is a set of codewords of length n that all
begin with a fixed prefix u of length t, and every codeword is a prefix of a closed
word of length n+ t that is closed by u.

A prefix-synchronized code is said to be maximal if it contains every possible
codeword that begins with the fixed prefix.

Guibas and Odlyzko (1978) showed that for k = 2, 3, 4 a prefix-synchronized code
is maximal if the fixed length-t prefix u is unbordered and t ≈ logk(n).
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A prefix-synchronized code is said to be maximal if it contains every possible
codeword that begins with the fixed prefix.

Guibas and Odlyzko (1978) showed that for k = 2, 3, 4 a prefix-synchronized code
is maximal if the fixed length-t prefix u is unbordered and t ≈ logk(n).
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Open Problems

They showed that the ratio between the size of a maximal prefix-synchronized
code of length n and kn

n
oscillates between 0.3679 . . ., and 0.3465 . . . (for k = 2),

0.3171 . . . (for k = 3), and 0.2911 (for k = 4).

However, just looking experimentally, it seems that the ratio nCk(n)
kn tends to a

constant.

n nC2(n)
2n

42 1.633719
43 1.630123
44 1.626657
45 1.623312
46 1.620082
47 1.616962
48 1.613948
49 1.611034
50 1.608218
51 1.605495

n nC3(n)
3n

19 1.044144
20 1.039228
21 1.034529
22 1.030038
23 1.025759
24 1.021695
25 1.017851
26 1.014232
27 1.010838
28 1.007667

n nC4(n)
4n

14 0.808427
15 0.802991
16 0.799168
17 0.796606
18 0.794974
19 0.793994
20 0.793439
21 0.793127
22 0.792917
23 0.792707
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Open Problems

Question

Is it possible to compute the number of length-n closed words (resp.
privileged words) in o(Ck(n)) (resp. o(Pk(n))) time?

I suspect yes for closed words, using only what is currently known.

Definition The autocorrelation u of a length-n binary word w is a binary
word of length n that has a 1 at position i if and only if w has a border of
length n− i+ 1.

In this definition, borders are allowed to be non-proper.

For example, the word redelivered has autocorrelation 10000000100.
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Open Problems

There is a recurrence for Bk(n, u) that depends on n and the autocorrelation of u.

This implies that Bk(n, u) = Bk(n, v) if u and v share the same autocorrelation.

Guibas and Odlyzko (1981) presented a recurrence to count the number of words
having a specific autocorrelation.

Guibas and Odlyzko also showed that there are a subexponential/superpolynomial
number of length-n autocorrelations.

To count closed words in o(Ck(n)) time, all we would need to do is

1. Count the number of periodic words of length n, handling the case where the
longest border is of length > ⌊n/2⌋.

2. For the case where the longest border is of length ≤ ⌊n/2⌋. Generate all
autocorrelations of length ≤ ⌊n/2⌋, compute Bk(n, u) for every individual
autocorrelation, and compute the number of words having every one of these
autocorrelations.
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Open Problems

However, this procedure takes superpolynomial time.

Question

Is it possible to compute the number of length-n closed words in polynomial
time?

I have no idea how to count privileged words in o(Pk(n)) time.
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Ranking/Unranking

Assume all closed/privileged words are listed in some order, perhaps lexicographic.

Ranking: Given a length-n closed (resp. privileged) word, compute its position in
the listing.

Unranking: Given a number between 1 and Ck(n) (resp. Pk(n)), compute the
length-n closed (resp. privileged) word at that position in the listing.

Example

Consider the length-5 closed words in lexicographic order.

Closed word Position

00000 1
00100 2
01001 3
01010 4
01101 5
01110 6

Closed word Position

10001 7
10010 8
10101 9
10110 10
11011 11
11111 12

Ranking: The position of the closed word 01101 is 5.
Unranking: The closed word at position 8 is 10010.
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Ranking/Unranking

Of course, we could always rank/unrank by generating the entire list. But this is
uninteresting.

Can we rank/unrank more efficiently than generating the whole list?

Conjecture

Closed words can be ranked/unranked in lexicographic order in o(Ck(n))
time.

It should be possible to derive a recurrence that counts the number of length-n
closed words with a fixed prefix u.

▶ This recurrence would depend on n, u, and all autocorrelations of length
≤ ⌊n/2⌋ that are compatible with u.

Then ranking a length-n closed word w involves summing this recurrence over at
most kn words of the form va where v is a prefix of w and a < w[|v|+ 1].

▶ This represents all closed words that are smaller than w in lexicographic
order.

Once ranking is solved, unranking can also be solved by repeated ranking.
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Ranking/Unranking

This method of ranking/ranking, if it works, runs in superpolynomial time.

Is it possible to do better than this?

Lexicographic order would be preferred, but is it possible in any order?

Question

Can closed words be ranked/unranked in any order in polynomial time?

I have no idea how to, even in principle, rank/unrank privileged words in o(Pk(n))
time.

The first algorithms to rank/unrank bordered and unbordered words were recently
presented:

D. Gabrić. Ranking and unranking bordered and unbordered words. Information Processing Letters. Vol. 184 (2024)
106452
J. Radoszewski, W. Rytter, T. Waleń. Faster Algorithms for Ranking/Unranking Bordered and Unbordered Words.
String Processing and Information Retrieval. SPIRE 2024. Lecture Notes in Computer Science, vol 14899. (2025)

29 / 33

https://www.sciencedirect.com/science/article/pii/S0020019023000959
https://www.sciencedirect.com/science/article/pii/S0020019023000959
https://link.springer.com/chapter/10.1007/978-3-031-72200-4_20
https://link.springer.com/chapter/10.1007/978-3-031-72200-4_20
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J. Radoszewski, W. Rytter, T. Waleń. Faster Algorithms for Ranking/Unranking Bordered and Unbordered Words.
String Processing and Information Retrieval. SPIRE 2024. Lecture Notes in Computer Science, vol 14899. (2025)

29 / 33

https://www.sciencedirect.com/science/article/pii/S0020019023000959
https://www.sciencedirect.com/science/article/pii/S0020019023000959
https://link.springer.com/chapter/10.1007/978-3-031-72200-4_20
https://link.springer.com/chapter/10.1007/978-3-031-72200-4_20


Ranking/Unranking

This method of ranking/ranking, if it works, runs in superpolynomial time.

Is it possible to do better than this?

Lexicographic order would be preferred, but is it possible in any order?

Question

Can closed words be ranked/unranked in any order in polynomial time?

I have no idea how to, even in principle, rank/unrank privileged words in o(Pk(n))
time.

The first algorithms to rank/unrank bordered and unbordered words were recently
presented:
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Generation

Generation: Compute every length-n closed (resp. privileged) word in
lexicographic order (or any order) in time proportional to Ck(n) (resp. Pk(n)),
i.e., in constant-amortized time per word.

Näıvely, we can generate every length-n word in lexicographic order, and then
perform a O(n2) test to determine whether it is closed.

We can improve the test to O(n) by realizing that a word is closed if and only if its
longest border is strictly longer than the longest borders of all of its proper prefixes.

The failure function from the KMP string matching algorithm computes the length
of the longest border of every prefix of a word, and can be computed in O(n) time.

Can we do better?
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Generation

Conjecture

solved! unpublished

All length-n closed words can be generated in constant-amortized time per
word in lexicographic order.

Idea

The failure function can be computed symbol by symbol from left-to-right.

Start recursively generating all words in lexicographic order and compute the
failure function in parallel.

Based on the failure function, infer whether a prefix can be uniquely extended
to a closed word.
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Generation

Using the algorithm for closed words, one can compute all privileged words in
amortized time between Ω(logk(n)) and O(log2k(n)) per word.

Forsyth et al. (2016) gave an algorithm to decide whether a length-n word is
privileged in O(n) time.

This algorithm is based on the failure function and can be computed left-to-right
symbol-by-symbol.

All we need to do is compute this algorithm in parallel to the recursive algorithm
to generate all closed words.

I have not figured out how to improve this algorithm to run in constant-amortized
time per word.

Question

Is it possible to generate all length-n privileged words in constant-amortized
time per word? In lexicographic order? In any order?

32 / 33



Generation

Using the algorithm for closed words, one can compute all privileged words in
amortized time between Ω(logk(n)) and O(log2k(n)) per word.

Forsyth et al. (2016) gave an algorithm to decide whether a length-n word is
privileged in O(n) time.

This algorithm is based on the failure function and can be computed left-to-right
symbol-by-symbol.

All we need to do is compute this algorithm in parallel to the recursive algorithm
to generate all closed words.

I have not figured out how to improve this algorithm to run in constant-amortized
time per word.

Question

Is it possible to generate all length-n privileged words in constant-amortized
time per word? In lexicographic order? In any order?

32 / 33



Generation

Using the algorithm for closed words, one can compute all privileged words in
amortized time between Ω(logk(n)) and O(log2k(n)) per word.

Forsyth et al. (2016) gave an algorithm to decide whether a length-n word is
privileged in O(n) time.

This algorithm is based on the failure function and can be computed left-to-right
symbol-by-symbol.

All we need to do is compute this algorithm in parallel to the recursive algorithm
to generate all closed words.

I have not figured out how to improve this algorithm to run in constant-amortized
time per word.
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Thank you!
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