Circularity and repetitiveness in non-injective DFOL systems

Words 2025

Herman Goulet-Ouellet, Karel Klouda, Štěpán Starosta 30.06.2025

Part 1

DFOL systems

P D F O L
Propagating Deterministic Finite-axiom Zero-context Lindenmayer

$$S = (A, \varphi \colon A^* \to A^+, W \subseteq A^+)$$

$$\mathcal{L}(S) = \{ u \in A^* \mid u \leq_{\mathsf{fac}} \varphi^n(w) \text{ for some } n \in \mathbb{N} \text{ and } w \in W \}.$$

- A is a finite alphabet.
- $\varphi: A^* \to A^*$ is a **morphism**.
- $W \subseteq A^+$ is a finite set of words called **axioms**.

The notion of DFOL system is closely related to the notion of **substitutive shifts**, also called **purely morphic shifts**.

$$S = (\{a,b\}, \varphi : a \mapsto ab, b \mapsto ba, a).$$

 $a, ab, abba, abbabaab, abbabaabbaabba, \dots$

Language:

```
\{\varepsilon, a, b, aa, ab, ba, bb, aab, aba, abb, baa, bab, bba, \dots\}
```

$$S = (\{a,b\}, \ \varphi \colon a \mapsto abba, b \mapsto bab, \ aa).$$

 $aa, abbaabba, abbababbababbaabbababba, \dots$

Language:

```
\{\varepsilon, a, b, ab, ba, aa, bb, baa, bab, abb, bba, aba, aab, \dots\}
```

$$S = (\{a, b, c, d\}, \varphi : a \mapsto baa, b \mapsto adc, c \mapsto cdc, d \mapsto ad, c).$$

 $c, cdc, cdcadcdc, cdcadcdcbaaadcdcadcdc, \dots \\$

Language:

 $\{\varepsilon, a, b, c, d, aa, ab, ad, ba, ca, cb, cd, dc, aaa, aab, aad, aba, \dots\}$

$$S = (\{a, b, c, d\}, \varphi : a \mapsto cad, b \mapsto cbd, c \mapsto c, d \mapsto c, \{a, b\}).$$

 $a, b, cad, cbd, ccadd, ccbdd, cccaddd, cccbddd, \dots$

Language:

 $\{\varepsilon, a, b, c, d, ad, bd, ca, cb, cc, dd, add, bdd, cad, cbd, cca, ccb, \dots\}$

$$S = (\{a, b, c\}, \varphi : a \mapsto abaca, b \mapsto aba, c \mapsto aba, a).$$

 $a,abaca,abacaabaabaca,\ldots$

Language:

Definition 2.3

A DFOL system is **eventually injective** if the following set is finite:

$$\Delta_{S} = \{\{u, v\} \subseteq \mathcal{L}(S) \mid u \neq v, \varphi(u) = \varphi(v)\}.$$

It is called injective if moreover $\Delta_S = \emptyset$.

In a PDFOL system we can measure failure of injectivity with the quantity

$$\delta_{S} = \max_{\{u,v\} \in \Delta_{S}} \{|\varphi(u)|\}.$$

The system S is eventually injective if and only if $\delta_S < \infty$ and injective if and only if $\delta_S = 0$ (max $\varnothing = 0$).

The requirement that $\{u,v\}\subseteq\mathcal{L}(S)$ makes eventual injectivity difficult to decide.

Example 2.4

Let $S = (\{a, b, c\}, \varphi : a \mapsto abacc, b \mapsto aba, c \mapsto aba, a)$.

The system *S* is eventually injective with

$$\Delta_S = \{\{b,c\}, \{ba,ca\}, \{ab,ac\}, \{bac,cab\}\}, \quad \delta_S = 11.$$

Example 2.5

Let $S = (\{a, b, c\}, \varphi : a \mapsto abaca, b \mapsto aba, c \mapsto aba, a)$.

The system S is not eventually injective. An infinite sequence of elements $\{u_n, v_n\} \in \Delta_S$ can be constructed inductively by

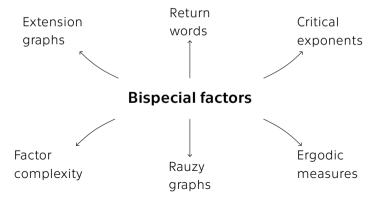
$$(u_1, v_1) = (aca, aba), \quad (u_{n+1}, v_{n+1}) = (u_1\varphi(u_n), v_1\varphi(v_n)).$$

Part 2

Main result

Motivations 5/23

The notions of weak and strong circularity are central in the construction of a data structure describing **bispecial factors** (Klouda, 2012). In this context, effective calculation of the thresholds is essential.



Mignosi & Séébold, 1993	Showed equivalence between strong circularity and unbounded repetitiveness.
Cassaigne, 1994	Introduced weak circularity and used it to study pattern-avoidance in HDOL systems.
Klouda, 2012	Used weak and strong circularity to describe bispecial factors in PDOL systems.
Klouda & Starosta, 2019	Revisited Mignosi and Séébold's result, fixing gaps in the proof.

In all of those papers, injectivity is assumed for most results. Our main goal is to explore what happens when the injectivity assumption is weakened or dropped entirely.

Definition

A DFOL system S is called **repetitive** if there is a word $u \in A^+$ such that $u^n \in \mathcal{L}(S)$ for all $n \in \mathbb{N}$. We say that u is a **repetition**.

The system *S* is called **unboundedly repetitive** if there is a repetition *u* which is unbounded in the following sense:

$$\lim_{n\to\infty}|\varphi^n(u)|<\infty.$$

Unbounded repetitiveness is a decidable property (Ehrenfeucht & Rozenberg, 1983; Mignosi & Séébold, 1993; Klouda & Starosta, 2015).

Main result

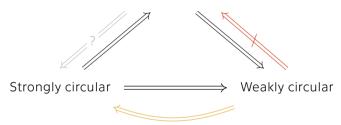
Our main result relates unbounded repetitiveness with two conditions called **weak circularity** and **strong circularity**.

Theorem

Let S be a PDFOL system.

- 1. If *S* is **not weakly circular** then it is **unboundedly repetitive**.
- 2. If *S* is **unboundedly repetitive** then it is **not strongly circular**.
- Strong circularity implies weak circularity.
- The converse fails in general.
- The converse holds for eventually injective systems.

Not unboundedly repetitive



- The negated red implication indicates a counter-example.
- The yellow implication holds in the eventually injective case.
- The gray implication with a question mark remains open.

Let $S = (A, \varphi, W)$ be a DFOL system. Define the *n*th power of S by

$$S^n = (A, \varphi^n, \{\varphi^i(w) \mid i < n, w \in W\}).$$

This system satisfies $\mathcal{L}(S^n) = \mathcal{L}(S)$. The extra axioms are important.

If S^n is weakly circular for some $n \ge 1$, then so is S (Proposition 3.12). However, the converse is false in general (Example 3.13).

Corollary 4.3

Let S be a strongly circular PDFOL system. Then S^n is weakly circular for all $n \ge 1$.

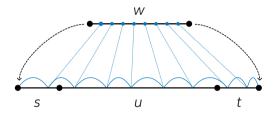
We do not know if S^n is in fact always strongly circular.

Part 3

Circularity

Definition 3.1

Let $S = (A, \varphi, W)$ be a DFOL system. An **interpretation** of $u \in \mathcal{L}(S)$ is a triple (s, w, t) such that $\varphi(w) = sut$.



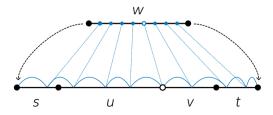
An interpretation is **minimal** if it has no proper factor which is also an interpretation. If (s, w, t) is a minimal interpretation of u,

$$|w| \le 2 + (|u| - 2) / \min_{a \in A} \{ |\varphi(a)| \}.$$

Definition

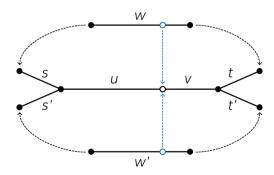
Let $S = (A, \varphi, W)$ be a DFOL system. A pair (u, v) is said to be **compatible** with an interpretation (s, w, t) if there is a factorization $w = w_1 w_2$ such that $\varphi(w_1) = u$ and $\varphi(w_2) = v$.

A pair is called **admissible** if it is compatible with at least one interpretation.



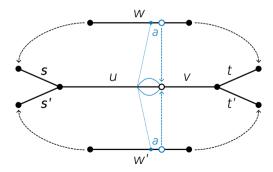
Definition 3.4

Let $S = (A, \varphi, W)$ be a DFOL system. A pair (u, v) is said to be **weakly synchronizing** if it is compatible with every interpretation of uv.

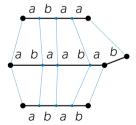


Definition 3.4

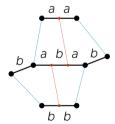
Let $S = (A, \varphi, W)$ be a DFOL system. A pair (u, v) is said to be **strongly synchronizing** if it is compatible with every interpretation of uv and for every interpretation (s, w, t) of uv the last letter of w_1 such that $\varphi(w_1) = u$ is constant.



$$S = (\{a,b\}, \varphi: a \mapsto ab, b \mapsto a, a)$$



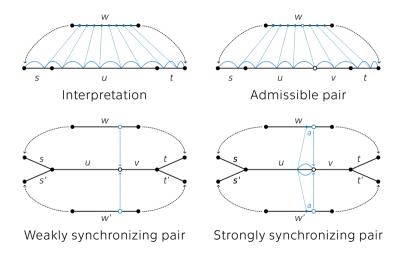
$$S = (\{a,b\}, \varphi: a \mapsto ab, b \mapsto ba, a)$$



$$S = (\{a, b, c\}, \varphi: a \mapsto abaca, b \mapsto aba, c \mapsto aba, a)$$



Recap



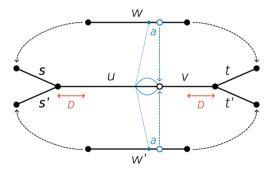
Definition 3.7

Let $S = (A, \varphi, w)$ be a DFOL system.

- 1. We say that S is **weakly circular** if there exists $D \ge 0$ such that all $u \in \mathcal{L}(S)$ with |u| > D admit a synchronizing pair.
- 2. We say that S is **strongly circular** if there exists $D' \ge 0$ such that all admissible pairs (u, v) with |u|, |v| > D' is strongly synchronizing.

The smallest values for D and D', denoted D_w and D_s , are called the weak and strong **circularity thresholds**.

In strong circularity, the constant D_s represents the delay before admissible pairs become strongly synchronizing.



Lemma 3.6

Let S be a DFOL system. Let (u_1, u_2) and (v_1, v_2) be two pairs such that $v_1 \leq_s u_1$ and $v_2 \leq_p u_2$. If (v_1, v_2) is weakly or strongly synchronizing, then so is (u_1, u_2) .

Therefore, we can work only with **minimal interpretations**. In particular, we can effectively test whether a given integer $D \ge 0$ satisfies $D_w \le D$ or $D_s \le D$.

If a DFOL system is known to be weakly or strongly circular then we can calculate D_w and D_s by testing successive values of $D \ge 0$.

This procedure can be made reasonably efficient by reusing information from smaller values of *D*.

Proposition 3.11

Let $S = (A, \varphi, W)$ be a PDFOL system.

1. If S is strongly circular then it is weakly circular with

$$D_{\mathsf{w}} \leq 2D_{\mathsf{s}} + \max_{a \in A} \{ |\varphi(a)| \}.$$

2. If S is weakly circular and eventually injective then it is strongly circular with

$$D_s \leq D_w + \delta_S + 1$$
.

Example 3.13

Let $S = (\{a, b, c\}, \varphi : a \mapsto aac, b \mapsto bc, c \mapsto bc, a)$. Then S is weakly circular with $D_w = 1$, but S^2 is not weakly circular. Thus, S is not strongly circular.

Example

$$S = (\{a,b\}, \varphi: a \mapsto ab, b \mapsto a, a). D_w = D_s = 0.$$

Example

$$S = (\{a, b\}, \varphi: a \mapsto ba, b \mapsto a, a). D_w = 0 \text{ and } D_s = 1.$$

Example

$$S = (\{a,b\}, \ \varphi \colon a \mapsto ab, b \mapsto ba, \ a). \ D_w = 3 \ \text{and} \ D_s = 1.$$

Example

$$S = (\{a,b\}, \varphi: a \mapsto abba, b \mapsto bab, aa). D_w = 15 \text{ and } D_s = 7.$$

Example

$$S = (\{a, b, c, d\}, \ \varphi \colon a \mapsto cad, b \mapsto cbd, c \mapsto c, d \mapsto c, \ \{a, b\}). \ D_w = D_s = 1.$$

Example

$$S = (\{a,b,c,d\}, \ \varphi \colon a \mapsto cb, b \mapsto ad, c \mapsto c, d \mapsto c, \ \{a,b\}). \ D_w = 0 \ \text{and} \ D_s = 1.$$

Example

$$S = (\{a, b, c\}, \ \varphi \colon a \mapsto abacc, b \mapsto aba, c \mapsto aba, \ a). \ D_w = D_s = 3.$$

Example

$$S = (\{a, b, c\}, \varphi : a \mapsto abaca, b \mapsto aba, c \mapsto aba, a)$$
. $D_w = 3$ and $D_s = 9$.

DOL online 23/23

We created an online tool to analyze bispecial factors in DFOL systems called **DOL online**. It is not operational yet, but we are working on it!

https://d0l.kam.fit.cvut.cz/