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Tangrams, matchings, and shuffle squares
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Problem (Henshall, Rampersad, Shallit, 2012):
Determine a simple closed form for the number of binary shuffle squares of length 2n.

OEIS A191755: 1, 2,6, 22,82, 320, 1268, 5102, 20632, 83972, ...

Theorem (He, Huang, Nam, Thaper, 2021): e
The number of binary shuffle squares of length 2n is at least ( n )

Conjecture (He, Huang, Nam, Thaper, 2021):
Almost all binary tangrams are shuftle squares.

Theorem (Bulteau, Vialette, 2020):
Recognizing binary shuffle squares is NP-complete.

Theorem (Bulteau, Jugé, Vialette, 2020):
Shuffle squares are avoidable over a 6-letter alphabet.
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Theorem (Fortuna, 2024): Any odd power of ABBA is not a shuffle square.

Proof not verified and not published.
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1) There must be a path P joining the first A to the last A.
2) There must be an odd cycle C on the B-part of the graph.

Theorem (Grytczuk, Pawlik, Rucinski 2025):

Let X = (a(1), a(2), ... , a(n+1)) and Y = (b(1), b(2), ..., b(n)) be two sequences of positive
integers such that:

1) All terms of X are even, except a(1) and a(n+1) which are odd.

2) The sequence Y cannot be split into two nonempty parts with the same sum.
Then the word AV B Ad?) B¥2)  Aaln) bW Aaln) g 101 4 shuffle square.



Thank youl!



