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Tangrams, matchings, and shuffle squares
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Fact: A word is a shuffle square if and only if it has a perfect matching without a nesting.
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Problem (Henshall, Rampersad, Shallit, 2012):
Determine a simple closed form for the number of binary shuffle squares of length 2n.

OEIS A191755:   1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, …

Theorem (He, Huang, Nam, Thaper, 2021): 
The number of binary shuffle squares of length 2n is at least        .

Conjecture (He, Huang, Nam, Thaper, 2021):
Almost all binary tangrams are shuffle squares.

Theorem (Bulteau, Vialette, 2020): 
Recognizing binary shuffle squares is NP-complete.

Theorem (Bulteau, Jugé, Vialette, 2020): 
Shuffle squares are avoidable over a 6-letter alphabet.
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Problem (Komisarski, 2024):
Prove that any odd power of ABBA is not a shuffle square.

Theorem (Fortuna, 2024): Any odd power of ABBA is not a shuffle square. 

Proof not verified and not published.
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2)     There must be an odd cycle C on the B-part of the graph.
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Theorem (Grytczuk, Pawlik, Ruciński 2025):
Let X = (a(1), a(2),  …  , a(n+1)) and Y = (b(1), b(2), … , b(n)) be two sequences of positive 
integers such that:
1) All terms of X are even, except a(1) and a(n+1) which are odd.
2) The sequence Y cannot be split into two nonempty parts with the same sum. 
 Then the word Aa(1) Bb(1) Aa(2) Bb(2) … Aa(n) Bb(n) Aa(n+1)  is not a shuffle square.



Thank you!


