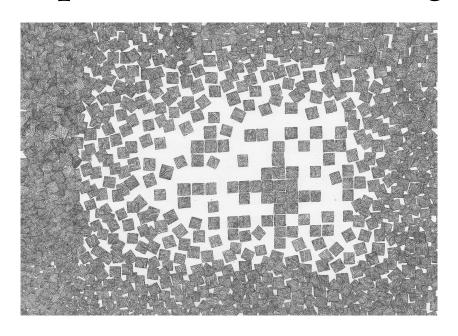
Shuffle squares and nest-free graphs



Jarosław Grytczuk Warsaw University of Technology

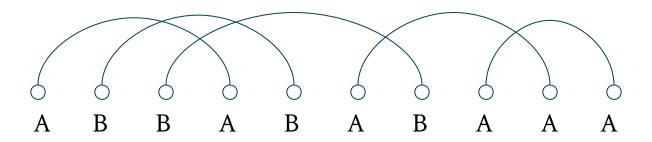
Bartłomiej PawlikSilesian University of Technology

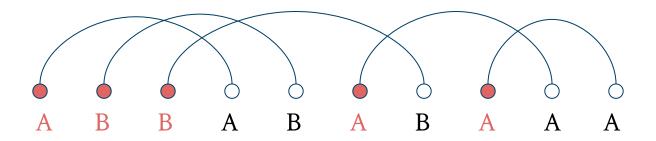
Andrzej Ruciński Adam Mickiewicz University

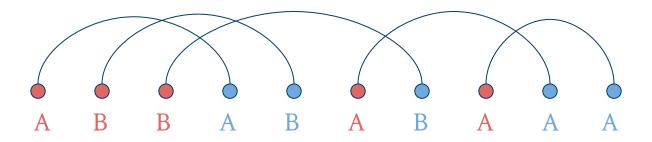
Tangrams, matchings, and shuffle squares

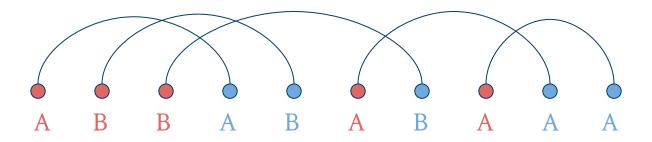
A B B A B A A A

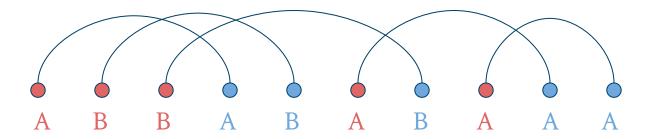
A B B A B A A A

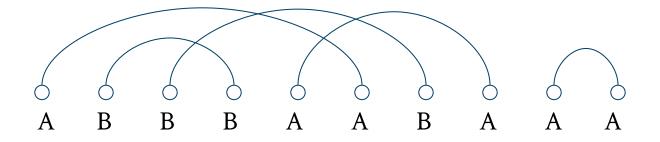


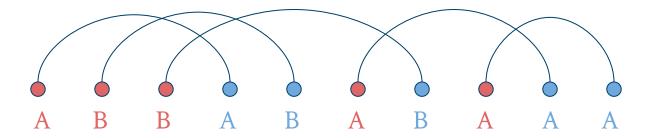


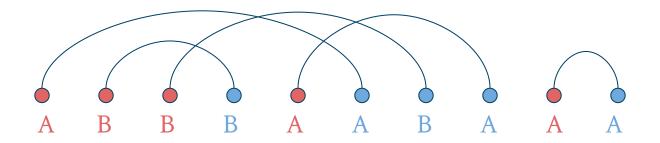


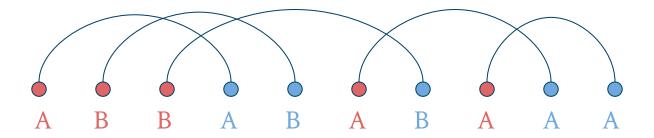


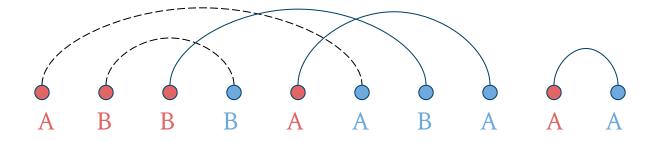


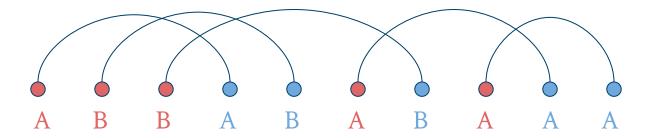




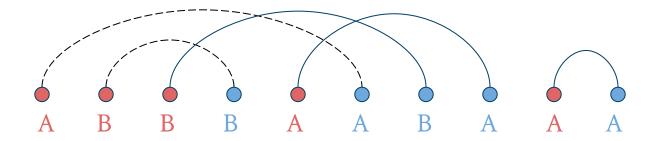








Definition: A *shuffle square* is a word that can be split into two identical subwords.



Fact: A word is a *shuffle square* if and only if it has a *perfect matching* without a *nesting*.

Determine a simple closed form for the number of *binary* shuffle squares of length 2*n*.

 $\binom{2n}{n}$

Determine a simple closed form for the number of *binary* shuffle squares of length 2n.

OEIS A191755: 1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, ...

Determine a simple closed form for the number of *binary* shuffle squares of length 2n.

OEIS A191755: 1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, ...

Theorem (He, Huang, Nam, Thaper, 2021):

The number of binary shuffle squares of length 2n is at least $\binom{2n}{n}$.

Determine a simple closed form for the number of *binary* shuffle squares of length 2*n*.

OEIS A191755: 1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, ...

Theorem (He, Huang, Nam, Thaper, 2021):

The number of binary shuffle squares of length 2n is at least $\binom{2n}{n}$.

Conjecture (He, Huang, Nam, Thaper, 2021):

Almost all binary *tangrams* are shuffle squares.

Determine a simple closed form for the number of *binary* shuffle squares of length 2*n*.

OEIS A191755: 1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, ...

Theorem (He, Huang, Nam, Thaper, 2021):

The number of binary shuffle squares of length 2n is at least $\binom{2n}{n}$.

Conjecture (He, Huang, Nam, Thaper, 2021):

Almost all binary tangrams are shuffle squares.

Theorem (Bulteau, Vialette, 2020):

Recognizing binary shuffle squares is NP-complete.

Determine a simple closed form for the number of *binary* shuffle squares of length 2*n*.

OEIS A191755: 1, 2, 6, 22, 82, 320, 1268, 5102, 20632, 83972, ...

Theorem (He, Huang, Nam, Thaper, 2021):

The number of binary shuffle squares of length 2n is at least $\binom{2n}{n}$.

Conjecture (He, Huang, Nam, Thaper, 2021):

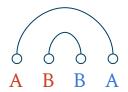
Almost all binary tangrams are shuffle squares.

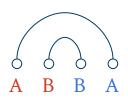
Theorem (Bulteau, Vialette, 2020):

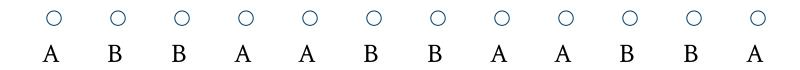
Recognizing binary shuffle squares is *NP-complete*.

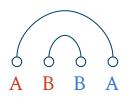
Theorem (Bulteau, Jugé, Vialette, 2020):
Shuffle squares are *avoidable* over a 6-letter alphabet.

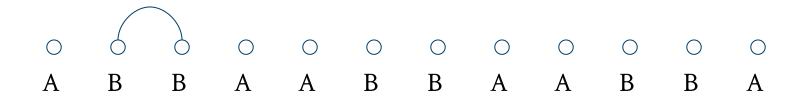
The odd ABBA problem

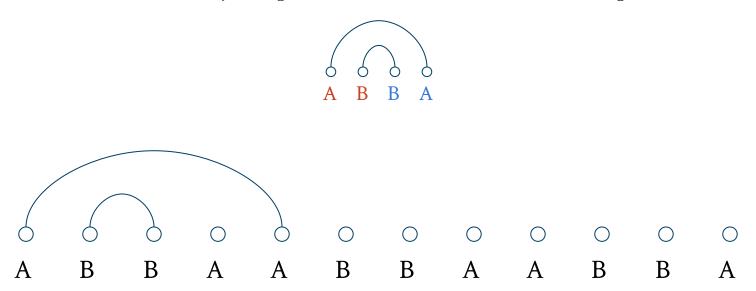


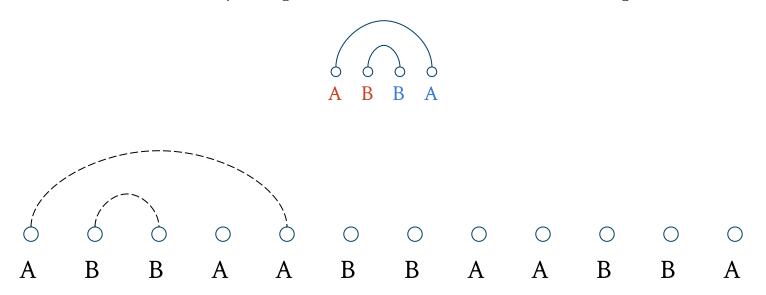


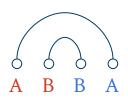


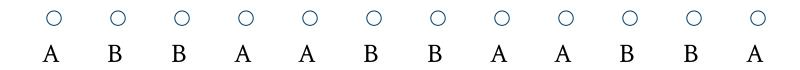


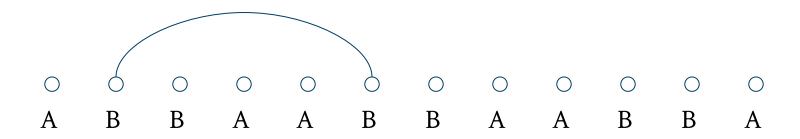


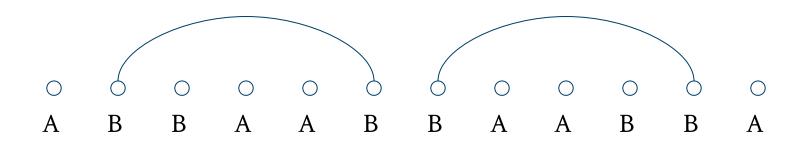


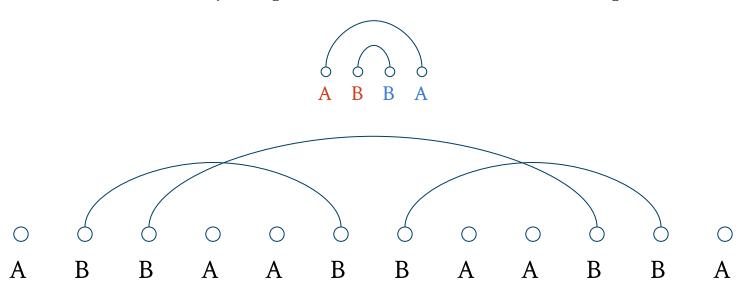


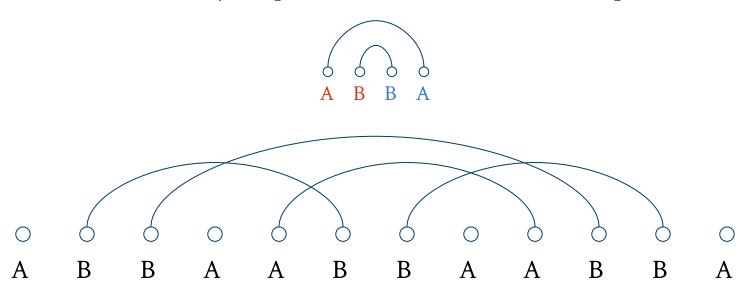


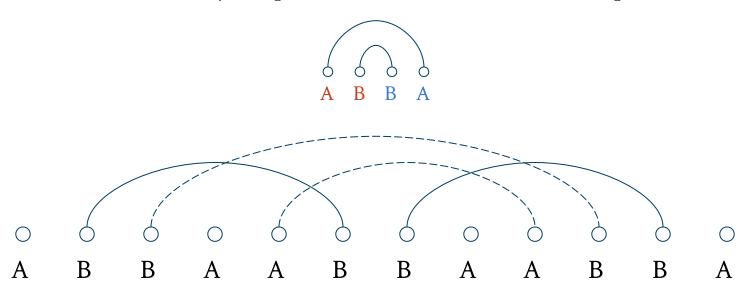




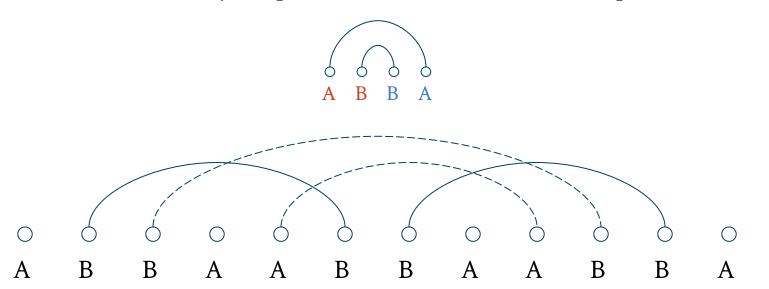






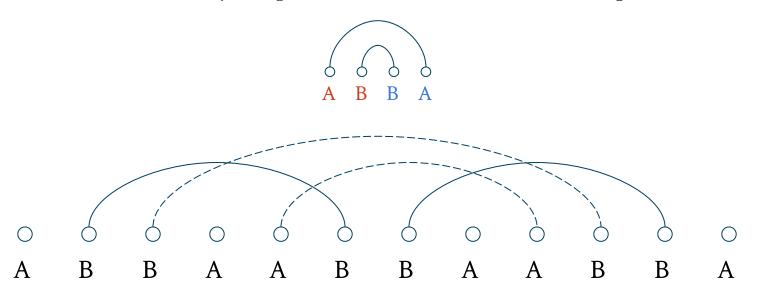


Prove that any *odd* power of ABBA is *not* a shuffle square.



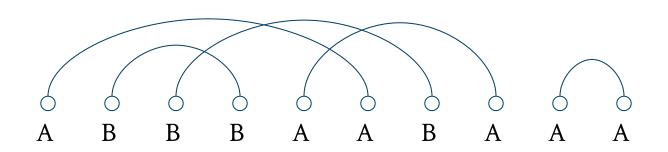
Theorem (Fortuna, 2024): Any odd power of ABBA is not a shuffle square.

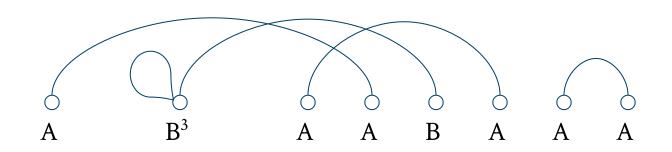
Prove that any *odd* power of ABBA is *not* a shuffle square.

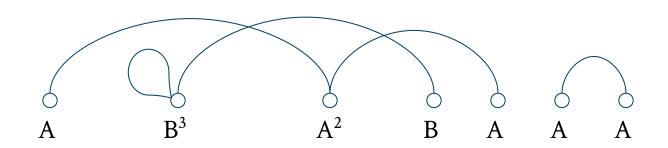


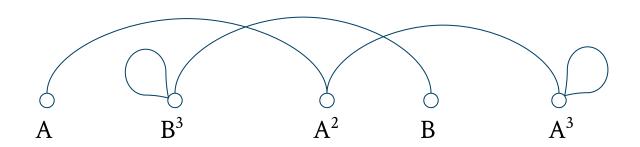
Theorem (Fortuna, 2024): Any odd power of ABBA is not a shuffle square.

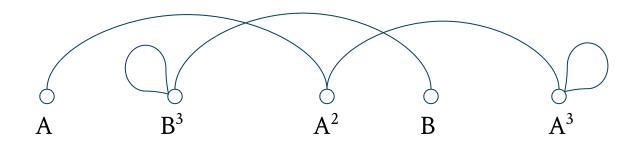
Proof not verified and not published.

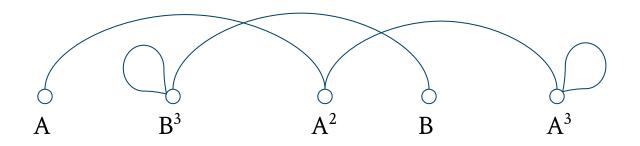




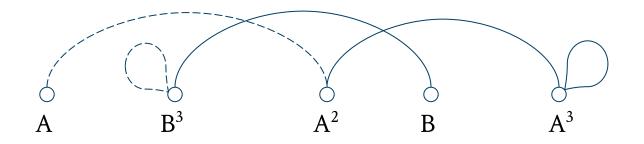




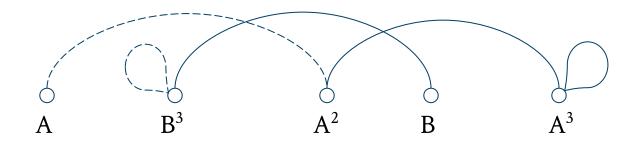




Fact: A word W is a *shuffle square* if and only if it has a graph G(W) with no *nesting*.

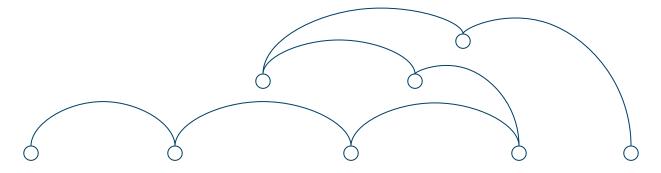


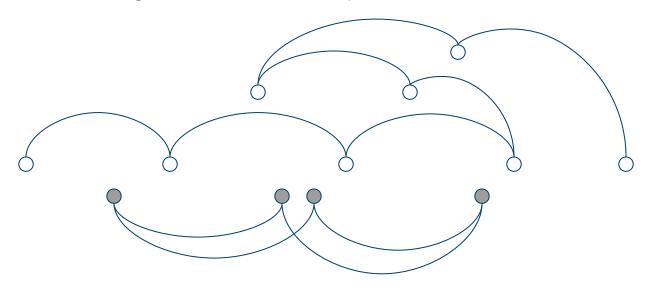
Fact: A word W is a shuffle square if and only if it has a graph G(W) with no nesting.

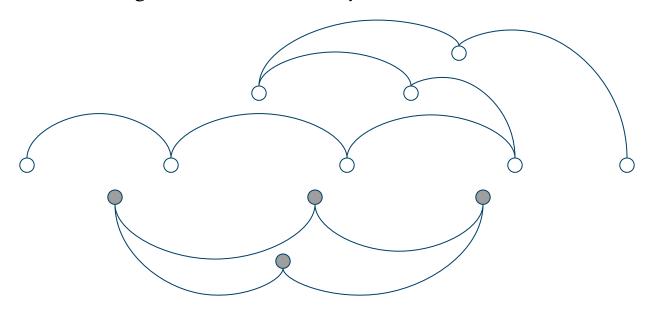


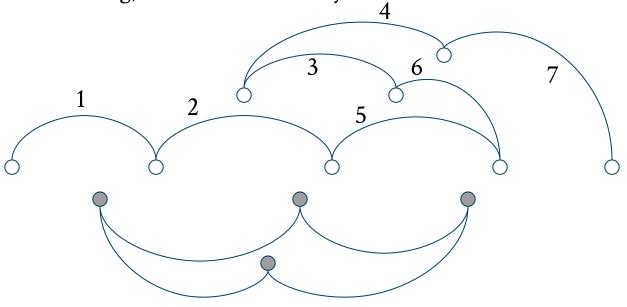
Fact: A word W is a shuffle square if and only if it has a graph G(W) with no nesting.

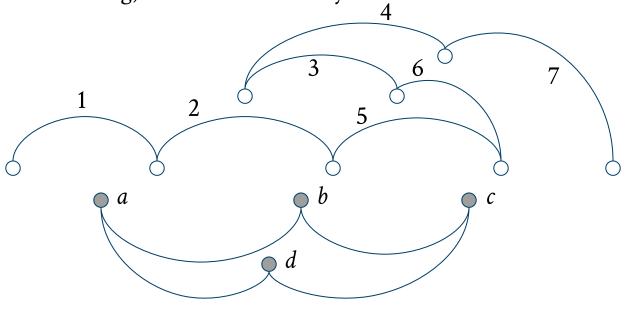
Lemma (Grytczuk, Pawlik, Ruciński, 2025):

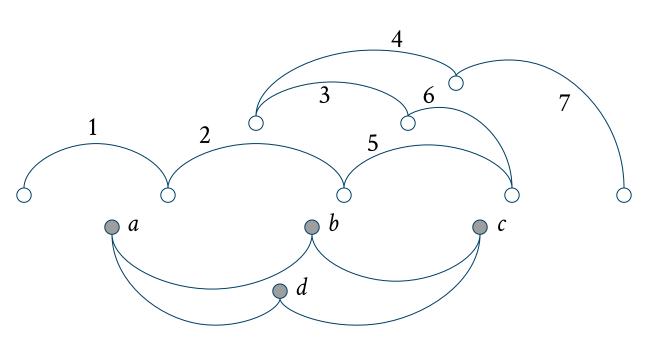


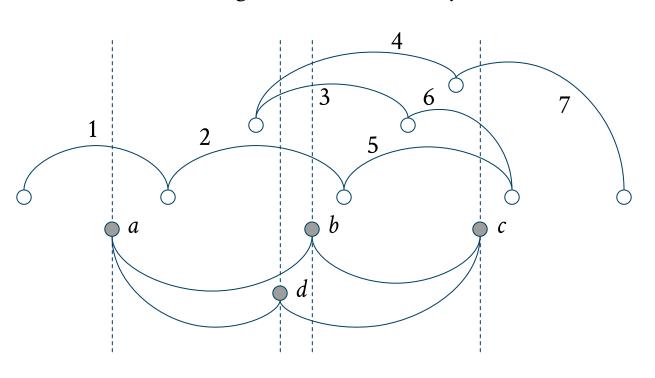


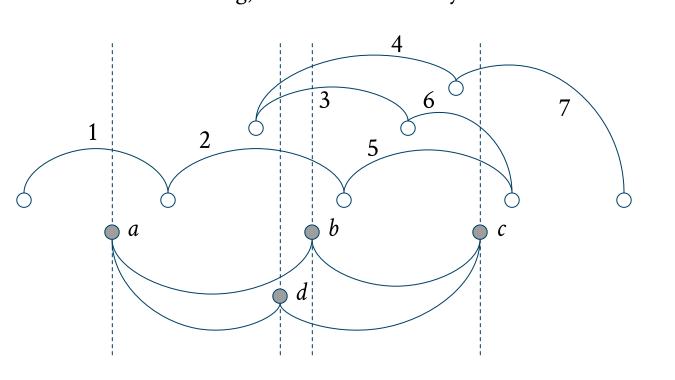


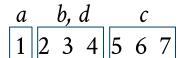


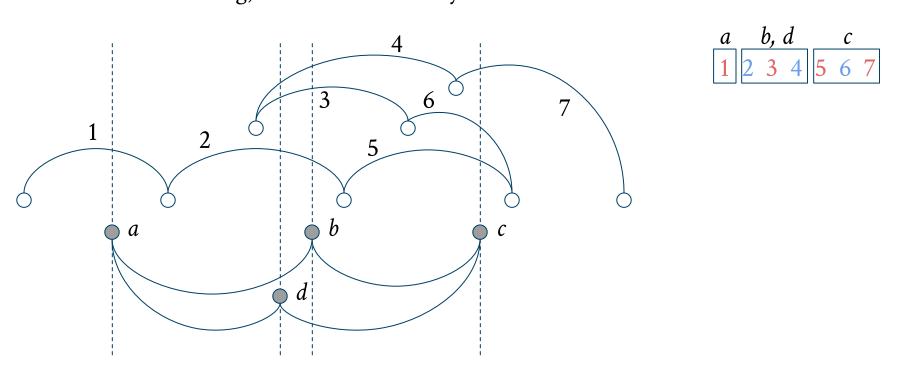


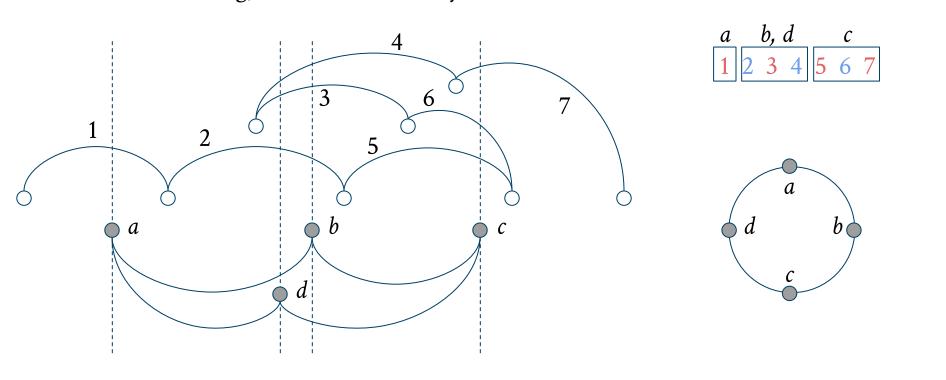


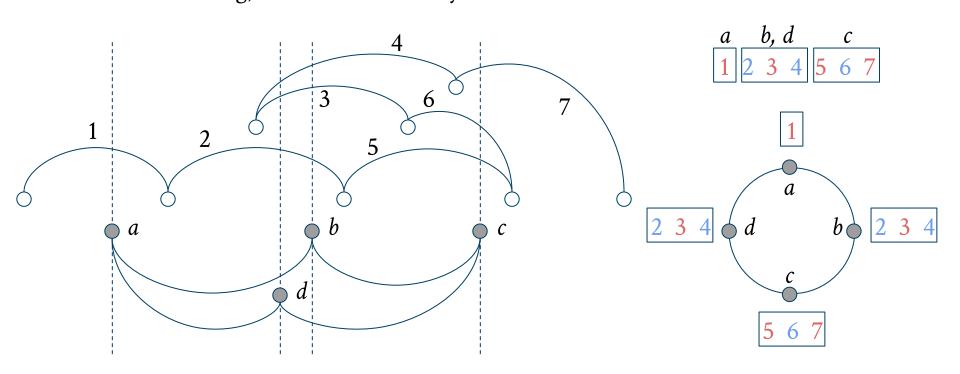


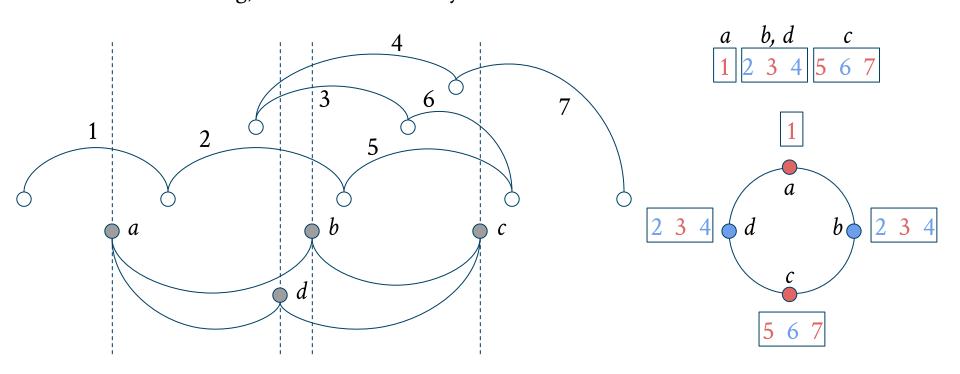


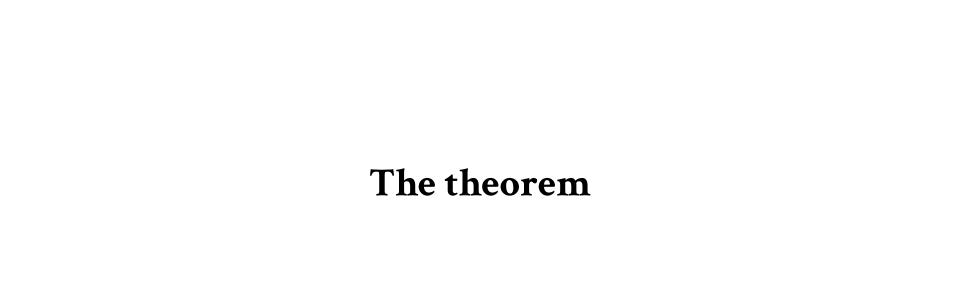






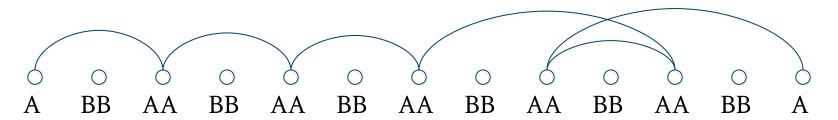




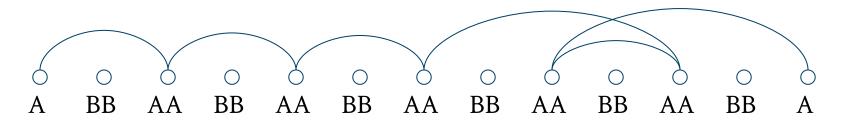


The *odd* power of ABBA is *not* a shuffle square.

The *odd* power of ABBA is *not* a shuffle square.

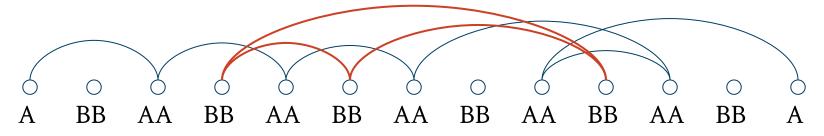


The *odd* power of ABBA is *not* a shuffle square.



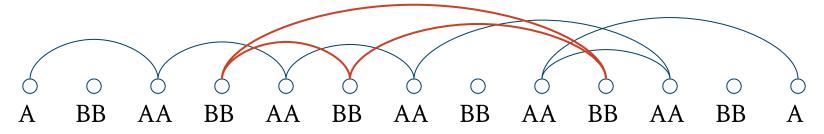
1) There must be a *path P* joining the first A to the last A.

The *odd* power of ABBA is *not* a shuffle square.



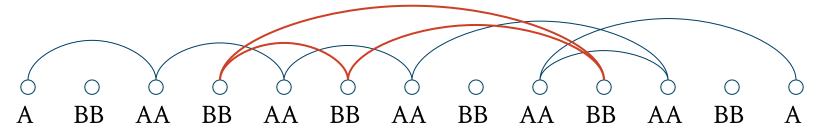
1) There must be a *path P* joining the first A to the last A.

The *odd* power of ABBA is *not* a shuffle square.



- 1) There must be a *path P* joining the first A to the last A.
- 2) There must be an *odd cycle C* on the B-part of the graph.

The *odd* power of ABBA is *not* a shuffle square.

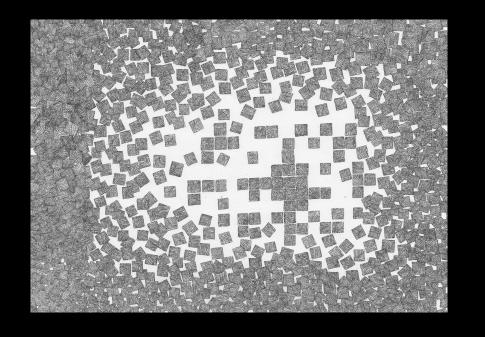


- 1) There must be a *path P* joining the first A to the last A.
- 2) There must be an *odd cycle C* on the B-part of the graph.

Theorem (Grytczuk, Pawlik, Ruciński 2025):

Let X = (a(1), a(2), ..., a(n+1)) and Y = (b(1), b(2), ..., b(n)) be two sequences of positive integers such that:

- 1) All terms of *X* are *even*, except a(1) and a(n+1) which are *odd*.
- 2) The sequence Y cannot be split into two nonempty parts with the same sum. Then the word $A^{a(1)} B^{b(1)} A^{a(2)} B^{b(2)} ... A^{a(n)} B^{b(n)} A^{a(n+1)}$ is not a shuffle square.



Thank you!