On the abelian complexity of infinite words
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Definitions, notations

o Ay={a1, a», -+, aq}, d-ary alphabet.
o A%: set of finite words on Ay
o AY: set of infinite words on Ay

@ Let u be a finite word on Ay
x(u) = (ulay, |ulay, - - -, |ulay) is the Parikh vector of w.



Definitions, notations

Let u € A%

@ Fp(u): set of factors of u of length n.

o F(u): set of all factors of w.

@ u is aperiodic if u is not ultimately periodic.

@ u is recurrent if any factor of u appears infinitely often.

@ u is uniformly recurrent if for all n € N, there exists N such
that any factor of u of length N contains any factor of u of
length n.




Definitions, notations

A morphism is a map f : A* — A* such that f(uv) = f(u)f(v),
for all u,v € A*.

If, for a letter a € A, f(a) = au with u # ¢, the morphism has a
unique fixed point beginning with a, which is the infinite word
limp—o00 F7(a).




Classical complexity

Definition

Given an infinite word u, the factor complexity of u is the map
defined by p,(n) = #Fn(u) for all n € N.




Classical complexity

Definition

Given an infinite word u, the factor complexity of u is the map
defined by p,(n) = #Fn(u) for all n € N.

It counts the number of distinct factors of u of given length.
Morse and Hedlund used factor complexity function to characterize
aperiodic infinite words and define Sturmian words as follows:

Theorem (Morse Hedlund, 1938)

Let u be an infinite word. The following statements are equivalent:

@ u is aperiodic.
@ There exists n such that p,(n) < n.
O (pu(n)), is bounded.




Classical complexity
Sturmians

Definition

An infinite word u is called Sturmian if its complexity satisfies
pu(n) =n+1 forall n € N.

Sturmian words constitute the class of non-ultimately periodic
infinite words whose complexity is minimal.

Inspired by the notion of factor complexity, other notions of
complexity have been developed. One such notion is the Abelian
complexity of infinite words, the topic of this talk.



Abelian complexity

Two words v and v in A* are said to be abelian equivalent, and we
note u ~,p v, if [ul, = |v|, for all a € A,
~,p define an equivalence relation on A*.

Definition

The abelian complexity of an infinite word u is the function defined
by
Pib(”) = #}—n(u)/ ~ab— #{X(V) v eF, (U)} °




Abelian complexity

Let u be an infinite word, n be an integer and a be a letter.
Define, m,(n) = min {|w|, : w € F,(u)} and
M, (n) = max{|w|, : w € Fn(u)}.

Lemma (Intermidiate Vectors Lemma)

Let u be an infinite word and n be an integer. Then, for any letter
a, we have

Vm € [my(n),My(n)], v e Fp(u), |v|,=m.




Abelian complexity

Lemma (first difference of

Let u be an infinite word. Then, for any letter a and every n € N,
we have:

@ my(n+1)—my(n) € {0, 1}
e M,(n+1)—M,(n) € {0, 1}.




Abelian complexity

Lemma (Max-min formula of )

Let u be an infinite binary word. Then, for all n € N:
@ my(n) + My(n) = My(n) + my(n) = n;
o p2b(n) = My(n) — m,(n) +1 = Mp(n) — my(n) + 1.

Proof
For any w € F,(u), x(w) is in the set

{(ma( ),n—ma(n));(ma(n) +1,n—my(n) —1);---;
1 (Ma(n),n —Ma(n))}.

By Intermidiate Vectors Lemma, all these vectors are attained.

Therefore, Mp(n) = n — m,(n) and my(n) = n — M,(n). The

results follow. O

| A\
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Abelian complexity

Lemma (first difference of )

Let u be an infinite binary word. Then

VneN:pb(n+1) - p?(n) e {-1,0, +1}.

| A

Proof.

We have p2P(n) = M,(n) — my(n) + 1. Since, by Lemma of first

difference of m, and M,, m,(n+ 1) —m,(n) € {0, 1} and

M,(n+ 1) — M,(n) € {0, 1}, it follows that

P (n+1)—p22(n) = (Ma(n+ 1) — My(n))— (ma(n + 1) — ma(n)
e{-1,0, +1}. O
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Abelian complexity

It is known that
Theorem (Richomme, Saari, Zamboni, 2009)

For all infinite word u over Ay, and for all n > 0,

n+d-—1
d—1

1< < (

In particular, the abelian complexity is bounded by O(n?).




Abelian complexity: periodic words and Sturmian words

Like the classical complexity, the abelian complexity intervenes in
characterization of some classes of infinite words: infinite periodic
words and Sturmian words.

Theorem (Coven, Hedlund, 1973)

An infinite word u is periodic if and only if p2°(n) = 1 for some
n>1.




Abelian complexity: periodic words and Sturmian words

Like the classical complexity, the abelian complexity intervenes in
characterization of some classes of infinite words: infinite periodic
words and Sturmian words.

Theorem (Coven, Hedlund, 1973)

An infinite word u is periodic if and only if p2°(n) = 1 for some
n>1.

N

Theorem (Coven, Hedlund, 1973)

An infinite word u is Sturmian if and only if, p2°(n) = 2, for all
n>1.

Inspired by this characterization of Sturmian words, Rauzy asked
whatether there exist aperiodic words on a ternary alphabet such
that p2P(n) = 3 for all n > 1.

Due to Richomme et al. the two folowing results provide positive
answers:



Abelian complexity: Sturmian words and following

Theorem (Richomme, Saari, Zamboni, 2009)

For all aperiodic balanced word u on a ternary alphabet,
p2P(n) =3, for all n > 1.

Theorem (Richomme, Saari, Zamboni, 2009)

Let u be an aperiodic binary word on {a, b}. then pj’r‘(’u)(n) =3, for
all n > 1 where o denotes the substitution defined by o(a) = abc
and o(b) = acbh.

So, Richomme et al. posed the question: " Does there exist a
recurrent word over a 4-ary alphabet with exactly 4 Abelian factors
of each length?”

Currie and Rampersad provide a negative answer:

Theorem (Currie, Rampersad, 2011)

Let d > 4 be an integer. There is no recurrent word over an d-ary
alphabet with exactly d Abelian factors of each length > 1.




Abelian complexity: binary Thue-Morse word

The binary Thue-Morse word t; is the fixed point from a of the
Thue-Morse substition o : a +— ab, b — ba.

Theorem (Cassaigne, Richomme, Saari, Zamboni, 2011)

The abelian complexity of ty is given by:

by | 3 ifniseven, n>?2
ptZ(n)_{2 if n is odd




Abelian complexity: Thue-Morse words

The binary Thue-Morse word t3 is the fixed point from a of the
substition u3 : a — abc, b — bca, c — cab.

Theorem (Kaboré, Kientéga, 2017)
The abelian complexity of t3 is given by:

1 if n=0

ab . 3 If n = ]_
(M =4 7 if n—3k k>1

6  otherwise

v

Chen and Wen (2019) determine completely the abelian complexity
of generalized Thue-Morse word ty (d > 2) and find that the
sequence (pff(n))n is ultimately periodic with period d.



Abelian complexity: Tribonacci word

The Tribonacci word T is the fixed point from a of the
substitution 7 : a — ab, b +— ac, c — a.

Theorem (Richomme, Saari, Zamboni (2009), Turek (2013),

Shallit (2021))

Vn>1,p{2(n) € {3, 4,5, 6,7}

where eah element appears infinitely many times.

And more generally, Shallit get the following result:



Abelian complexity and automaticity

Theorem (Shallit, 2021)
Let u be a sequence that is automatic in some regular numeration

system. Suppose that

(a) the Parikh vectors of length-n prefixes of u form a
synchronized sequence; and

(b) the abelian complexity p2” is bounded above by a constant.

Then (p3°(n)) -, is an automatic sequence and the DFAQ

computing it is effectively computable.
Furthermore, if condition (a) holds, then condition (b) can be

tested algorithmically.




Abelian complexity: general results

Joint work with Julien Cassaigne (2016). J




Abelian complexity and uniform recurrence

Theorem

Let u be a uniformly recurrent binary word. Then, there exists a

positive real number o« < 1 and a non-negative integer ng such
that:

Vn > ng, pP(n) < an.




Abelian complexity and uniform recurrence

Let u be a uniformly recurrent word on {0, 1}.

o uis constant. Then, p2°(n) = 1 and the result holds,
@ u is not constant. Then
dN e N, Vw € Fn(u), 0,1 € F(w)
So, 1 < |w|; <| < N — 1land thus p??(N) < N — 1.
Let n € N such that §; > 3 and take w € F,(u). We can write:
w=wiw; - wew' where k = | ], |wj| = N and [w/| < N. So,

k<|wl; <n-—k

That is letter 1 appears in w at least k times and at most n — k
times.

Therefore
p(n)<n—2k+1<n-2-8+4+3<n—~%=n(l-73).

To obtain the result it suffices to put « =1 — % and np =3N . [




Abelian complexity and uniform recurrence

Theorem (Control formula of uniform recurrence by )

Let u be a uniformly recurrent d-ary word. Then, there exist a

positive real number oo < 1 and a non-negative integer ng such
that:

andfl

ab
Vn Z no, Py, (n) S W




Link between abelian complexity and uniform frequency of

letters

We say that u admits

e frequencies of letters if for any letter a, and any sequence

(wp) of prefixes of u such that lim,_, |w,| = 0o, then

lim o0 ||W”|"” exists.
Wh|

@ uniform frequencies of letters if for any letter a, and any

sequence (wy,) of factors of u such that lim,_ |ws| = 00,

then limp_so0 ‘l":/"‘f’ exists.
n




Link between abelian complexity and uniform frequency of
letters

Lemma

Let u be an infinite word, (w;) be a sequence of factors of u and f
be a real number in (0,1) such that lim;_ |w;| = co and

limi o0 e = f. Then

V6 >0, dnp € N, Vn > ng, Jv € Fp, (uv),

Ma—f‘gé.

|v]

Lemma

| A

Let u be an infinite word with a letter a that does not admit
frequency. Then, (ma—(") and M"T(") converge and further

[im m"T(n) < lim M"’T(")




Link between abelian complexity and uniform frequency of
letters

Let u be an infinite binary word. Then p3°(n) = o(n) if and only if
u admits uniform frequencies of letters.

The above theorem provides a characterization of binary words
with uniform frequencies of letters. On a larger alphabet, we have
a weaker result.



Link between abelian complexity and uniform frequency of
letters

Proof.

Let v be an infinite binary word which does not admit uniform
frequencies of letters and suppose by contradiction that
p2P(n) = o(n). Then

V6 >0, 3ng €N, Vn > ng, p2P(n) < dn.
For every integer n > ng, we have
M,(n) —m,(n) + 1 = p2P(n) < én.

Let v be a factor of length N sufficiently large. It follows

ma(n)| 2| < o < Mo (| 2] 42)

hence




Link between abelian complexity and uniform frequency of
letters

Proof.
11 vl 11
— - | < < — — .
ma(”)<n /v>— N _Ma(n)<n+N>

Since u does not admit uniform frequencies of letters, there exists
two distinct reals f; and f, and two sequences of factors (vx) and
(v;) satisfying |vik| = |v;| = k and

o limy oo 42 = ;

o limy o |V£|a = f,.
It follows maT(”) < il MET(") i=1,2. So,
|h—fh| < w < 0. As ¢ is arbitrarily small, f; = 5.
Contradiction!
Conversely, if u admits uniform frequencies of letters, then both
(maT(")) and (MaT(")) converge to the same limit £,. It follows that
PP oV — Ma(n)—ma(m)+1 i1y ]




Link between abelian complexity and uniform frequency of
letters

Let u be an infinite d-ary word. We have the following statements:

@ If p2°(n) = o(n) then u admits uniform frequencies of letters.

@ If u admits uniform frequencies of letters then
p22(n) = o (né1).




Abelian complexity and equi-frequency of letters in infinite

binary words

It is well known that the Thue-Morse word possesses uniform
frequencies of letters and its abelian complexity satisfies
piP(2n) =3 and pP(2n+ 1) =2 for all n > 1.

2

Theorem

Let u be an infinite binary word such that for all n > 1,

2b | 3 ifnis even
Pu (”)_{2 if n is odd

Then, u admits uniform frequencies of letters and the letters have
the same frequencies i.e., fo(u) = f1(u) = %




Abelian complexity and equi-frequency of letters in infinite
binary words

Suppose

3 if nis even
VnZl,pib(n)_{z if n is odd

By induction, we check that

Vn>1,Vw € Fop(u),|wlo € {n—1, n, n+1}.

Ol

’

Through the examples below we observe that the converse of the a
bove Theorem does not hold.

e The image of any infinite binary aperiodic word u by substitution
®: 0+~ 0101, 1+~ 1100 satisfies: ,ojfzu) (n) >3 and

fo(®(u)) = fi(®(v)) = 3.

e The word u = (000111)* satisfies: p2?(3) = 4 and

fol(y) =F (y) =1



Abelian complexity and equi-frequency of letters in infinite
binary words

Theorem

Let u be an infinite binary word satisfying:
@ pi°(n) = o(n),
@ 3no, ¥n > no, piP(n+1) # piP(n)
Then, u admits uniform frequencies of letters and the frequencies

are: fo(u) = f1(u) = 3.




@ The Theorem on the equi-frequency of letters for any binary
word having the same abelian complexity as the binary
Thue-Morse word can be extended to the d-ary alphabet
(d > 3)?

@ As in the last Theorem, any d-ary word having the same
abelian complexity of the d-ary Thue-Morse word ty does
admit equi-frequency of letters: f,(u) = %?




Thank you for your

attention!




