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Definitions, notations

Ad = {a1, a2, · · · , ad}, d-ary alphabet.

A∗d : set of finite words on Ad

Aωd : set of infinite words on Ad

Let u be a finite word on Ad

χ(u) = (|u|a1 , |u|a2 , · · · , |u|ad ) is the Parikh vector of u.



Definitions, notations

Let u ∈ Aω

Fn(u): set of factors of u of length n.

F(u): set of all factors of u.

u is aperiodic if u is not ultimately periodic.

u is recurrent if any factor of u appears infinitely often.

u is uniformly recurrent if for all n ∈ N, there exists N such
that any factor of u of length N contains any factor of u of
length n.



Definitions, notations

A morphism is a map f : A∗ → A∗ such that f (uv) = f (u)f (v),
for all u, v ∈ A∗.

If, for a letter a ∈ A, f (a) = au with u 6= ε, the morphism has a
unique fixed point beginning with a, which is the infinite word
limn→∞ f n(a).



Classical complexity

Definition

Given an infinite word u, the factor complexity of u is the map
defined by ρu(n) = #Fn(u) for all n ∈ N.

It counts the number of distinct factors of u of given length.
Morse and Hedlund used factor complexity function to characterize
aperiodic infinite words and define Sturmian words as follows:

Theorem (Morse Hedlund, 1938)

Let u be an infinite word. The following statements are equivalent:

1 u is aperiodic.

2 There exists n such that ρu(n) ≤ n.

3 (ρu(n))n is bounded.
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Classical complexity
Sturmians

Definition

An infinite word u is called Sturmian if its complexity satisfies
ρu(n) = n + 1 for all n ∈ N.

Sturmian words constitute the class of non-ultimately periodic
infinite words whose complexity is minimal.

Inspired by the notion of factor complexity, other notions of
complexity have been developed. One such notion is the Abelian
complexity of infinite words, the topic of this talk.



Abelian complexity

Two words u and v in A∗ are said to be abelian equivalent, and we
note u ∼ab v , if |u|a = |v |a for all a ∈ A,
∼ab define an equivalence relation on A∗.

Definition

The abelian complexity of an infinite word u is the function defined
by

ρabu (n) = #Fn(u)/ ∼ab= # {χ (v) : v ∈ Fn (u)} .



Abelian complexity

Let u be an infinite word, n be an integer and a be a letter.
Define, ma(n) = min {|w |a : w ∈ Fn(u)} and
Ma(n) = max {|w |a : w ∈ Fn(u)}.

Lemma (Intermidiate Vectors Lemma)

Let u be an infinite word and n be an integer. Then, for any letter
a, we have

∀m ∈ [ma(n),Ma(n)] , ∃v ∈ Fn (u) , |v |a = m.



Abelian complexity

Lemma (first difference of ma and Ma)

Let u be an infinite word. Then, for any letter a and every n ∈ N,
we have:

ma(n + 1)−ma(n) ∈ {0, 1}
Ma(n + 1)−Ma(n) ∈ {0, 1} .



Abelian complexity

Lemma (Max-min formula of ρabu )

Let u be an infinite binary word. Then, for all n ∈ N:

ma(n) + Mb(n) = Ma(n) + mb(n) = n;

ρabu (n) = Ma(n)−ma(n) + 1 = Mb(n)−mb(n) + 1.

Proof.

For any w ∈ Fn(u), χ(w) is in the set
{(ma(n), n −ma(n)) ; (ma(n) + 1, n −ma(n)− 1) ; · · · ;
· · · ; (Ma(n), n −Ma(n))} .
By Intermidiate Vectors Lemma, all these vectors are attained.
Therefore, Mb(n) = n −ma(n) and mb(n) = n −Ma(n). The
results follow.



Abelian complexity

Lemma (first difference of ρabu )

Let u be an infinite binary word. Then

∀n ∈ N : ρabu (n + 1)− ρabu (n) ∈ {−1, 0, +1} .

Proof.

We have ρabu (n) = Ma(n)−ma(n) + 1. Since, by Lemma of first
difference of ma and Ma, ma(n + 1)−ma(n) ∈ {0, 1} and
Ma(n + 1)−Ma(n) ∈ {0, 1} , it follows that
ρabu (n+1)−ρabu (n) = (Ma(n + 1)−Ma(n))−(ma(n + 1)−ma(n))

∈ {−1, 0, +1} .



Abelian complexity

It is known that

Theorem (Richomme, Saari, Zamboni, 2009)

For all infinite word u over Ad , and for all n ≥ 0,

1 ≤ ρabu (n) ≤
(

n + d − 1

d − 1

)
In particular, the abelian complexity is bounded by O(nd).



Abelian complexity: periodic words and Sturmian words

Like the classical complexity, the abelian complexity intervenes in
characterization of some classes of infinite words: infinite periodic
words and Sturmian words.

Theorem (Coven, Hedlund, 1973)

An infinite word u is periodic if and only if ρabu (n) = 1 for some
n ≥ 1.

Theorem (Coven, Hedlund, 1973)

An infinite word u is Sturmian if and only if, ρabu (n) = 2, for all
n ≥ 1.

Inspired by this characterization of Sturmian words, Rauzy asked
whatether there exist aperiodic words on a ternary alphabet such
that ρabu (n) = 3 for all n ≥ 1.
Due to Richomme et al. the two folowing results provide positive
answers:
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Abelian complexity: Sturmian words and following

Theorem (Richomme, Saari, Zamboni, 2009)

For all aperiodic balanced word u on a ternary alphabet,
ρabu (n) = 3, for all n ≥ 1.

Theorem (Richomme, Saari, Zamboni, 2009)

Let u be an aperiodic binary word on {a, b}. then ρabσ(u)(n) = 3, for

all n ≥ 1 where σ denotes the substitution defined by σ(a) = abc
and σ(b) = acb.

So, Richomme et al. posed the question: ”Does there exist a
recurrent word over a 4-ary alphabet with exactly 4 Abelian factors
of each length?”
Currie and Rampersad provide a negative answer:

Theorem (Currie, Rampersad, 2011)

Let d ≥ 4 be an integer. There is no recurrent word over an d-ary
alphabet with exactly d Abelian factors of each length ≥ 1.



Abelian complexity: binary Thue-Morse word

The binary Thue-Morse word t2 is the fixed point from a of the
Thue-Morse substition µ2 : a 7→ ab, b 7→ ba.

Theorem (Cassaigne, Richomme, Saari, Zamboni, 2011)

The abelian complexity of t2 is given by:

ρabt2
(n) =

{
3 if n is even, n ≥ 2
2 if n is odd

.



Abelian complexity: Thue-Morse words

The binary Thue-Morse word t3 is the fixed point from a of the
substition µ3 : a 7→ abc, b 7→ bca, c 7→ cab.

Theorem (Kaboré, Kientéga, 2017)

The abelian complexity of t3 is given by:

ρabt3
(n) =


1 if n = 0
3 if n = 1
7 if n = 3k , k ≥ 1
6 otherwise

Chen and Wen (2019) determine completely the abelian complexity
of generalized Thue-Morse word td (d ≥ 2) and find that the
sequence

(
ρabtd (n)

)
n

is ultimately periodic with period d .



Abelian complexity: Tribonacci word

The Tribonacci word T is the fixed point from a of the
substitution τ : a 7→ ab, b 7→ ac, c 7→ a.

Theorem (Richomme, Saari, Zamboni (2009), Turek (2013),
Shallit (2021))

∀n ≥ 1, ρabt3
(n) ∈ {3, 4, 5, 6, 7}

where eah element appears infinitely many times.

And more generally, Shallit get the following result:



Abelian complexity and automaticity

Theorem (Shallit, 2021)

Let u be a sequence that is automatic in some regular numeration
system. Suppose that

(a) the Parikh vectors of length-n prefixes of u form a
synchronized sequence; and

(b) the abelian complexity ρabu is bounded above by a constant.

Then
(
ρabu (n)

)
n≥0

is an automatic sequence and the DFAO
computing it is effectively computable.
Furthermore, if condition (a) holds, then condition (b) can be
tested algorithmically.



Abelian complexity: general results

Joint work with Julien Cassaigne (2016).



Abelian complexity and uniform recurrence

Theorem

Let u be a uniformly recurrent binary word. Then, there exists a
positive real number α < 1 and a non-negative integer n0 such
that:

∀n ≥ n0, ρ
ab
u (n) ≤ αn.



Abelian complexity and uniform recurrence

Proof.

Let u be a uniformly recurrent word on {0, 1}.
u is constant. Then, ρabu (n) = 1 and the result holds,

u is not constant. Then

∃N ∈ N, ∀w ∈ FN(u), 0, 1 ∈ F(w)

So, 1 ≤ |w |1 ≤ | ≤ N − 1and thus ρabu (N) ≤ N − 1.
Let n ∈ N such that n

N ≥ 3 and take w ∈ Fn(u). We can write:
w = w1w2 · · ·wkw ′ where k =

⌊
n
N

⌋
, |wi | = N and |w ′| < N. So,

k ≤ |w |1 ≤ n − k

That is letter 1 appears in w at least k times and at most n − k
times.
Therefore
ρabu (n) ≤ n − 2k + 1 ≤ n − 2 · nN + 3 ≤ n − n

N = n(1− 1
N ) .

To obtain the result it suffices to put α = 1− 1
N and n0 = 3N .



Abelian complexity and uniform recurrence

Theorem (Control formula of uniform recurrence by ρabu )

Let u be a uniformly recurrent d-ary word. Then, there exist a
positive real number α < 1 and a non-negative integer n0 such
that:

∀n ≥ n0, ρ
ab
u (n) ≤ αnd−1

(d − 1)!
.



Link between abelian complexity and uniform frequency of
letters

Definition

We say that u admits

frequencies of letters if for any letter a, and any sequence
(wn) of prefixes of u such that limn→∞ |wn| =∞, then

limn→∞
|wn|a
|wn| exists.

uniform frequencies of letters if for any letter a, and any
sequence (wn) of factors of u such that limn→∞ |wn| =∞,

then limn→∞
|wn|a
|wn| exists.



Link between abelian complexity and uniform frequency of
letters

Lemma

Let u be an infinite word, (wi ) be a sequence of factors of u and f
be a real number in (0, 1) such that limi→∞ |wi | =∞ and

limi→∞
|wi |a
|wi | = f . Then

∀δ > 0, ∃n0 ∈ N, ∀n ≥ n0, ∃v ∈ Fn (u) ,

∣∣∣∣ |v |a|v | − f

∣∣∣∣ ≤ δ.
Lemma

Let u be an infinite word with a letter a that does not admit
frequency. Then,

(
ma(n)

n

)
and

(
Ma(n)

n

)
converge and further

lim ma(n)
n < lim Ma(n)

n .



Link between abelian complexity and uniform frequency of
letters

Theorem

Let u be an infinite binary word. Then ρabu (n) = o(n) if and only if
u admits uniform frequencies of letters.

The above theorem provides a characterization of binary words
with uniform frequencies of letters. On a larger alphabet, we have
a weaker result.



Link between abelian complexity and uniform frequency of
letters

Proof.

Let u be an infinite binary word which does not admit uniform
frequencies of letters and suppose by contradiction that
ρabu (n) = o(n). Then

∀δ > 0, ∃n0 ∈ N, ∀n ≥ n0, ρ
ab
u (n) ≤ δn.

For every integer n ≥ n0, we have

Ma(n)−ma(n) + 1 = ρabu (n) ≤ δn.

Let v be a factor of length N sufficiently large. It follows

ma(n)

⌊
N

n

⌋
≤ |v |a ≤Ma(n)

(⌊
N

n

⌋
+ 1

)
hence



Link between abelian complexity and uniform frequency of
letters

Proof.

ma(n)

(
1

n
− 1

N

)
≤ |v |a

N
≤Ma (n)

(
1

n
+

1

N

)
.

Since u does not admit uniform frequencies of letters, there exists
two distinct reals f1 and f2 and two sequences of factors (vk) and
(v ′k) satisfying |vk | = |v ′k | = k and

limk→∞
|vk |a
k = f1;

limk→∞
|v ′

k |a
k = f2.

It follows ma(n)
n ≤ fi ≤ Ma(n)

n , i = 1, 2. So,

|f1 − f2| ≤ Ma(n)−ma(n)
n ≤ δ. As δ is arbitrarily small, f1 = f2.

Contradiction!
Conversely, if u admits uniform frequencies of letters, then both(
ma(n)

n

)
and

(
Ma(n)

n

)
converge to the same limit fa. It follows that

ρabu
( n)n = Ma(n)−ma(n)+1

n = o(1).



Link between abelian complexity and uniform frequency of
letters

Theorem

Let u be an infinite d-ary word. We have the following statements:

1 If ρabu (n) = o(n) then u admits uniform frequencies of letters.

2 If u admits uniform frequencies of letters then
ρabu (n) = o

(
nd−1

)
.



Abelian complexity and equi-frequency of letters in infinite
binary words

It is well known that the Thue-Morse word possesses uniform
frequencies of letters and its abelian complexity satisfies
ρabt2

(2n) = 3 and ρabt2
(2n + 1) = 2 for all n ≥ 1.

Theorem

Let u be an infinite binary word such that for all n ≥ 1,

ρabu (n) =

{
3 if n is even
2 if n is odd

Then, u admits uniform frequencies of letters and the letters have
the same frequencies i.e., f0(u) = f1(u) = 1

2 .



Abelian complexity and equi-frequency of letters in infinite
binary words

Proof.

Suppose

∀n ≥ 1, ρabu (n) =

{
3 if n is even
2 if n is odd

By induction, we check that

∀n ≥ 1, ∀w ∈ F2n(u), |w |0 ∈ {n − 1, n, n + 1} .

Through the examples below we observe that the converse of the a
bove Theorem does not hold.
• The image of any infinite binary aperiodic word u by substitution
Φ : 0 7→ 0101, 1 7→ 1100 satisfies: ρabΦ(u) (n) ≥ 3 and

f0(Φ(u)) = f1(Φ(u)) = 1
2 .

• The word u = (000111)ω satisfies: ρabu (3) = 4 and
f0 (u) = f1 (u) = 1

2 .



Abelian complexity and equi-frequency of letters in infinite
binary words

Theorem

Let u be an infinite binary word satisfying:

1 ρabu (n) = o(n),

2 ∃n0, ∀n ≥ n0, ρ
ab
u (n + 1) 6= ρabu (n)

Then, u admits uniform frequencies of letters and the frequencies
are: f0(u) = f1(u) = 1

2 .



Two questions

The Theorem on the equi-frequency of letters for any binary
word having the same abelian complexity as the binary
Thue-Morse word can be extended to the d-ary alphabet
(d ≥ 3)?

As in the last Theorem, any d-ary word having the same
abelian complexity of the d-ary Thue-Morse word td does
admit equi-frequency of letters: fa(u) = 1

d ?



Thank you for your
attention!


