Positionality of Dumont-Thomas numeration systems

Savinien Kreczman Joint work with Sébastien Labbé and Manon Stipulanti

July 4, 2025

1 Introduction

2 Main result

3 Link to Bertrand numeration systems

Numeration systems

Definition

Numeration system over the *domain* $\mathbb{D} \in \{\mathbb{N}, \mathbb{Z}\}$:

- representation map rep : $\mathbb{D} \to A^*$
- evaluation map val: $L \to \mathbb{D}$, where rep(\mathbb{D}) $\subseteq L \subseteq A^*$ such that val \circ rep = $id_{\mathbb{D}}$.

Common ways of defining numeration systems:

- Positional numeration systems: given $(U_n)_{n \in \mathbb{N}}$, set $\text{val}_{\mathcal{U}} : \mathcal{A}^* \to \mathbb{N} : w_{\ell-1} \cdots w_0 \mapsto \sum_{i=0}^{\ell-1} w_i U_i$.
- Abstract numeration systems: if A is ordered, given a regular language $L \subseteq A^*$, val_L is the unique increasing bijection between (L, \preccurlyeq_{rad}) and (\mathbb{N}, \leq) .

Positionality (1)

Abstract numeration systems may or may not be also definable in a positional way.

Example

The abstract numeration system defined from $L = \{0, ..., 9\}^* \setminus 0\{0, ..., 9\}^*$ is equal to the usual decimal system, corresponding to $U_i = 10^i$.

Example

The abstract numeration system defined from $L=1^*2^*$ verifies rep(3)=11 and rep(5)=22, so it cannot be defined as a positional numeration system.

Positionality (2)

Definition

A numeration system over $\mathbb N$ is *positional* if the underlying alphabet A is a set of consecutive integers $\{0,1,\ldots,c\}$ for some $c\in\mathbb N$ and if there exists a sequence $(U_i)_{i\geq 0}\in\mathbb N^{\mathbb N}$ such that the evaluation map is of the form

val: $A^* o \mathbb{N}$, $w_{k-1} \cdots w_0 \mapsto \sum_{i=0}^{k-1} w_i U_i$.

Positionlaity (2)

Definition

A numeration system over \mathbb{Z} is *positional* if the underlying alphabet A is a set of consecutive integers $\{0, 1, ..., c\}$ for some $c \in \mathbb{N}$ and if there exist sequences $(U_i)_{i \geq 0}, (V_i)_{i \geq 0} \in \mathbb{N}^{\mathbb{N}}$ such that the evaluation map is of the form val: $A^* \to \mathbb{Z}$, $w_{k-1} \cdots w_0 \mapsto \sum_{i=0}^{k-2} w_i U_i - w_{k-1} V_{k-1}$.

Example

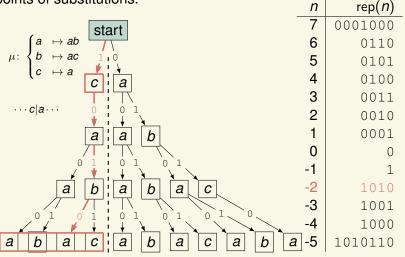
The two's complement numeration system is defined by the weights $U_n = V_n = 2^n$. For instance, we have val(1011) = -8 + 2 + 1 = -5.

Dumont-Thomas numeration systems (1989)

Use the label of a shortest path from the root to column n to represent n: rep(4) = 100.

Generalized Dumont-Thomas numeration systems(1)

Motivation: use Dumont-Thomas numeration systems as a way to generate Wang tilings → we must be able to deal with negative numbers → we must be able to deal with periodic points of substitutions.



Generalized Dumont-Thomas numerations (2)

Definition (Labbé, Lepšová, 2024; K., Labbé, Stipulanti, 2025)

Given a substitution μ , a periodic point u of period p of μ with seed b|a and some $r \in \{0, \ldots, p-1\}$, the *complement Dumont-Thomas numeration system associated with* μ , u and r is defined by its representation map, such that $\operatorname{rep}(n)$ is the label of a shortest path of length congruent to $r \mod p$, going from the root to a node in column n in the tree $\mathcal{T}_{\mu,b|a}$.

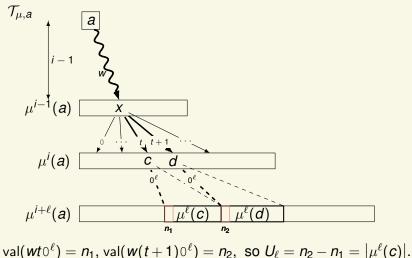
Question

Given μ , u, r, can we decide the positionality of the associated Dumont-Thomas numeration system?

If we consider $\mu \colon a \mapsto aab$, $b \mapsto a$ and $\rho \colon a \mapsto abb$, $b \mapsto ab$, both with seed b|a, the system associated with μ is positional but the one associated with ρ is not.

Sketch of the argument (1)

Assume the system is positional and let us compare the values of the words $wt0^{\ell}$ and $w(t+1)0^{\ell}$.



Sketch of the argument (2)

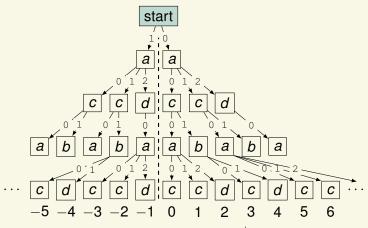
Conjecture (K., Labbé, Stipulanti, 2024)

If the Dumont–Thomas numeration system associated with μ , u, and r is positional, then $\left|\mu^{\ell}(c)\right|=U_{\ell}$ for every letter c that has a younger sibling in $\mathcal{T}_{\mu,b|a}$.

Other direction: If $|\mu^\ell(c)| = U_\ell$ for every letter c that has a younger sibling in $\mathcal{T}_{\mu,b|a}$, then incrementing the digit at position ℓ in an expansion increases the value by U_ℓ , so the system is indeed positional.

Complications (1)

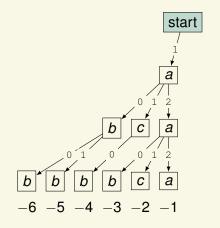
 μ : $a \mapsto ccd$, $b \mapsto cd$, $c \mapsto ab$, $d \mapsto a$, seed $a \mid a$.



The system is positional for both values of r, despite the fact that $|\mu^{\ell}(a)| \neq |\mu^{\ell}(c)|$ for all odd ℓ :

Complications (2)

 μ : $a \mapsto bca$, $b \mapsto bb$, $c \mapsto b$ with the seed a|b.



n	$rep_{u,0}(n)$
-1	1
-2	11
-3	10
-4	110
-5	101
-6	100
-7	1101
weight	421

Positional $(U_\ell=2^\ell,\ V_0=1,\ V_\ell=3.2^\ell)$, despite the fact that $|\mu^\ell(b)|\neq |\mu^\ell(c)|$ for all $\ell\geq 1$.

Complications (3)

In the first example, the letters a and c occur only at levels of a given parity in the tree, so the sketch can only be applied for half the values of ℓ .

In the second example, the letter to the right of a c can never be part of a shortest path to a column, so the sketch cannot be applied to c.

Definition (Technical)

For $j \in \{0, ..., p-1\}$, the set E_j is the set of letters c verifying one of the following conditions:

- There exists a node in $\mathcal{T}_{\mu,b|a}$ labeled by c at a level congruent to $j \mod p$, in a column other than -2, that has a younger sibling.
- The node at level j and column -2 in $\mathcal{T}_{\mu,b|a}$ is labeled by c, it has a younger sibling labeled by d, and $|\mu^{p-j}(d)| > 1$.

Main result

We let μ be a substitution, u a periodic point with period p and seed b|a, and $r \in \{0, \dots, p-1\}$.

Theorem (K., Labbé, Stipulanti 2025)

The Dumont-Thomas numeration system associated with μ , u and r is positional if and only if both of the following occur:

- The map $c \mapsto |\mu^{\ell}(c)|$ has a constant value U_{ℓ} over E_j for all ℓ, j such that $\ell + j \equiv r \mod p$.
- (Technical) For $j \in \{0, \dots, r-1\}$, if the node at level j and column -2 in $\mathcal{T}_{\mu,b|a}$ is labeled by c and has a younger sibling labeled by d with $\left|\mu^{p-j}(d)\right|=1$, then $\left|\mu^{r-j}(c)\right|=U_{r-j}$.

In this case, $(U_{\ell})_{\ell}$ and $V_{\ell} = |\mu^{\ell}(b)|$ are the sequences of weights of the system.

Corollaries (1)

In some cases, the complications outlined above do not occur. The first is the case of a primitive substitution.

We say that a letter is *non-final* in the substitution μ if it occurs in the image of any letter at any position other than the last one.

Corollary

Let μ be a primitive substitution, u be a periodic point of μ with seed b|a and period p, and $r \in \{0, \dots, p-1\}$. The Dumont-Thomas complement system associated with μ , u and r is positional if and only if the map $c \mapsto |\mu^{\ell}(c)|$ is constant over the non-final letters in μ for every ℓ .

In this case, the value of the constant is U_{ℓ} , and $V_{\ell} = |\mu^{\ell}(b)|$.

Corollaries (2)

The second case where no complication occurs is that of the original Dumont-Thomas numeration systems.

Corollary

Let μ be a substitution and u be a right-infinite fixed point of μ . The Dumont-Thomas numeration system associated with μ and u is positional if and only if the map $c \mapsto |\mu^{\ell}(c)|$ is constant over the non-final letters in μ for every ℓ . In this case, the value of the constant is U_{ℓ} .

Example

Consider the substitution $\mu\colon a\mapsto abc,\ b\mapsto aac,\ c\mapsto a$. The non-final letters are a and b, and we can show by induction that their images by μ^ℓ have the same length for any ℓ . Thus, the system is positional.

Bertrand numeration systems

Bertrand numeration systems (Bertrand-Mathis, 1989; Charlier, Cisternino, Stipulanti, 2022) are a special case of greedy positional numeration systems, defined by either of the two properties:

- $w \in \operatorname{rep}(\mathbb{N}) \Leftrightarrow w \cap \operatorname{rep}(\mathbb{N})$ for any nonempty w.
- The lexicographically largest words of each length in $rep(\mathbb{N})$ are all prefixes of one another.

There are three kinds of Bertrand numeration systems:

- $U_{\ell} = \ell + 1$ (trivial).
- $U_{\ell} = d_1 U_{\ell-1} + d_2 U_{\ell-2} + \ldots + d_{\ell} U_0 + 1$ where $d_1 d_2 \cdots$ is the quasi-greedy Rényi representation of 1 in some base β (canonical).
- $U_{\ell} = d_1 U_{\ell-1} + d_2 U_{\ell-2} + \ldots + d_{\ell} U_0 + 1$ where $d_1 d_2 \cdots$ is the greedy Rényi representation of 1 in some simple Parry base β (non-canonical).

The original Dumont-Thomas numeration systems have the above properties.

Simplifying the morphism

Let us study the case where μ has a right-infinite fixed point u.

Lemma

Let $\mu\colon A^*\to A^*$ be a substitution such that the map $c\mapsto \left|\mu^\ell(c)\right|$ is constant over the non-final letters in μ for every integer $\ell\ge 0$. Then there exist an alphabet $B\subseteq A$, a substitution $\nu\colon B^*\to B^*$ such that ν has only one non-final letter and a coding $\phi\colon A\to B$ such that ν and $\phi(u)$ define the same Dumont-Thomas numeration system as μ and u.

A substitution that has a fixed point and only one non-final letter is of the form

$$\mu: a_1 \mapsto a_1^{d_1} a_2, a_2 \mapsto a_1^{d_2} a_3, \dots, a_n \mapsto a_1^{d_n} a_k$$

for some $n \ge 1$, $1 \le k \le n$, $d_1 > 0$ and $d_2, ..., d_n \ge 0$.

Fabre substitutions

Another approach to Bertrand numeration systems (Fabre, 1995): If β is a Parry number and the quasi-greedy Rényi representation of 1 is $(d_1 \cdots d_{k-1})(d_k \cdots d_n)^{\omega}$, define the substitution

$$\mu_{\beta} \colon 1 \mapsto 1^{d_1} 2, \, 2 \mapsto 1^{d_2} 3 \dots, n \mapsto 1^{d_n} k.$$

For instance, for β equal to the positive root of $x^3-x^2-x-1=0$, the quasi-greedy representation of 1 is $(110)^\omega$ and we find

$$\mu_{\beta} \colon \mathbf{1} \mapsto \mathbf{12}, \, \mathbf{2} \mapsto \mathbf{13}, \mathbf{3} \mapsto \mathbf{1}.$$

Theorem (Fabre, 1995)

 $\left|\mu_{\beta}^{\ell}(1)\right|$ is the U_{ℓ} defined for the canonical Bertrand numeration system for β . This numeration system is the Dumont-Thomas numeration system associated with μ_{β} and $\mu_{\beta}^{\infty}(1)$.

Equivalence between the two systems (1)

The other two kinds of Bertrand numeration systems are also associated with Dumont-Thomas numeration systems when β is Parry.

The converse is not always true.

Example

Consider $\mu\colon a\mapsto aab,\ b\mapsto aaaa$. The associated Dumont-Thomas system is positional, with weight sequence 1, 3, 10, 32, However, it is not equal to a Bertrand numeration system: rep(9) = 23, but it should be 30. If such a system were Bertrand associated with some β , the quasi-greedy β -representation of 1 would be $(23)^\omega$, which breaks the Parry conditions.

Equivalence between the two systems (2)

Proposition (K., Labbé, Stipulanti 2025)

Let μ be a substitution of the form

$$\mu: a_1 \mapsto a_1^{d_1}a_2, a_2 \mapsto a_1^{d_2}a_3, \dots, a_n \mapsto a_1^{d_n}a_k$$

for some $n \geq 1$, $1 \leq k \leq n$, $d_1 > 0$ and $d_2, \ldots, d_n \geq 0$. Construct the word $d_1 d_2 \cdots = d_1 \cdots d_{k-1} (d_k \cdots d_n)^{\omega}$. The Dumont–Thomas numeration system associated with μ and the seed a_1 is equal to a Bertrand numeration system if and only if we have $d_i d_{i+1} \cdots \preccurlyeq_{lex} d_1 d_2 \cdots$ for each $i \geq 1$.

Conclusion

- Dumont-Thomas numeration systems, interpreting substitutions as trees, are easily generalized to biinfinite periodic points of substitutions.
- Their positionality is completely understood.
- In the case of the original Dumont-Thomas numeration systems, the positional systems are those that correspond to substitutions "in the style of Fabre".
- Those systems are Bertrand numerations associated with Parry numbers if and only if a lexicographic condition is met.

Thank you!