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Numeration systems

Definition
Numeration system over the domain D ∈ {N,Z}:

representation map rep : D → A∗

evaluation map val : L → D, where rep(D) ⊆ L ⊆ A∗

such that val ◦ rep = idD.

Common ways of defining numeration systems:
Positional numeration systems: given (Un)n∈N, set
valU : A∗ → N : wℓ−1 · · ·w0 7→

∑ℓ−1
i=0 wiUi .

Abstract numeration systems: if A is ordered, given a
regular language L ⊆ A∗, valL is the unique increasing
bijection between (L,≼rad) and (N,≤).
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Positionality (1)

Abstract numeration systems may or may not be also definable
in a positional way.

Example

The abstract numeration system defined from
L = {0, . . . ,9}∗ \ 0{0, . . . ,9}∗ is equal to the usual decimal
system, corresponding to Ui = 10i .

Example

The abstract numeration system defined from L = 1∗2∗ verifies
rep(3) = 11 and rep(5) = 22, so it cannot be defined as a
positional numeration system.
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Positionality (2)

Definition
A numeration system over N is positional if the underlying
alphabet A is a set of consecutive integers {0,1, . . . ,c} for
some c ∈ N and if there exists a sequence (Ui)i≥0 ∈ NN such
that the evaluation map is of the form
val : A∗ → N,wk−1 · · ·w0 7→

∑k−1
i=0 wiUi .
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Positionlaity (2)

Definition
A numeration system over Z is positional if the underlying
alphabet A is a set of consecutive integers {0,1, . . . ,c} for
some c ∈ N and if there exist sequences (Ui)i≥0, (Vi)i≥0 ∈ NN

such that the evaluation map is of the form
val : A∗ → Z,wk−1 · · ·w0 7→

∑k−2
i=0 wiUi−wk−1Vk−1.

Example

The two’s complement numeration system is defined by the
weights Un = Vn = 2n. For instance, we have
val(1011) = −8 + 2 + 1 = −5.
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Dumont-Thomas numeration systems (1989)

µ :


a 7→ ab
b 7→ ac
c 7→ a

, fixed point starting with a.

a

a b

a b a c

a b a c a b a

0 1

0 1 0 1

0 1 0 1 0 1 0

0 1 2 3 4 5 6

a

1

0

0

Use the label of a shortest path from the root to column n to
represent n: rep(4) = 100.
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Generalized Dumont-Thomas numeration systems(1)

Motivation: use Dumont-Thomas numeration systems as a way
to generate Wang tilings⇝ we must be able to deal with
negative numbers⇝ we must be able to deal with periodic
points of substitutions.

µ :


a 7→ ab
b 7→ ac
c 7→ a

· · · c|a · · ·

a

a b

a b a c

a b a c a b a

0 1

0 1 0 1

0 1 0 1 0 1 0

start

c

a

a b

a b a c

01

0

0 1

0 1 0 1

1

0

1

0

n rep(n)
7 0001000
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0

-1 1
-2 1010
-3 1001
-4 1000
-5 1010110
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Generalized Dumont-Thomas numerations (2)

Definition (Labbé, Lepšová, 2024; K., Labbé, Stipulanti,
2025)

Given a substitution µ, a periodic point u of period p of µ with
seed b|a and some r ∈ {0, . . . ,p − 1}, the complement
Dumont-Thomas numeration system associated with µ, u and r
is defined by its representation map, such that rep(n) is the
label of a shortest path of length congruent to r mod p, going
from the root to a node in column n in the tree Tµ,b|a.

Question
Given µ,u, r , can we decide the positionality of the associated
Dumont-Thomas numeration system?

If we consider µ : a 7→ aab, b 7→ a and ρ : a 7→ abb, b 7→ ab,
both with seed b|a, the system associated with µ is positional
but the one associated with ρ is not.
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Sketch of the argument (1)

Assume the system is positional and let us compare the values
of the words wt0ℓ and w(t + 1)0ℓ.
Tµ,a

µi−1(a)

µi(a)

µi+ℓ(a)

i − 1

a

x

w

c d
0 . . . . . .t t + 1

0ℓ

µℓ(c)
n1

0ℓ

µℓ(d)
n2

t

0ℓ

n1

t + 1

0ℓ

n2

val(wt0ℓ) = n1, val(w(t + 1)0ℓ) = n2, so Uℓ = n2 − n1 =
∣∣µℓ(c)

∣∣.
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Sketch of the argument (2)

Conjecture (K., Labbé, Stipulanti, 2024)

If the Dumont–Thomas numeration system associated with µ,
u, and r is positional, then

∣∣µℓ(c)
∣∣ = Uℓ for every letter c that

has a younger sibling in Tµ,b|a.

Other direction: If
∣∣µℓ(c)

∣∣ = Uℓ for every letter c that has a
younger sibling in Tµ,b|a, then incrementing the digit at position ℓ
in an expansion increases the value by Uℓ, so the system is
indeed positional.
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Complications (1)

µ : a 7→ ccd ,b 7→ cd , c 7→ ab,d 7→ a, seed a|a.

start

a

c c d

a b a b a

c c d c d c c · · ·
0 1 2 3 4 5 6

a

c c d

a b a b a

c d c c d· · ·
−1−2−3−4−5

0

0 1 2

0 1 0 1 0

0 1 2 0 1 0 1 2

1

0 1 2

0 1 0 1 0

0 1 0 1 2

The system is positional for both
values of r , despite the fact that∣∣µℓ(a)

∣∣ ̸= ∣∣µℓ(c)
∣∣ for all odd ℓ:

ℓ 0 1 2 3 4∣∣µℓ(a)
∣∣ 1 3 5 13 21∣∣µℓ(c)
∣∣ 1 2 5 8 21
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Complications (2)

µ : a 7→ bca, b 7→ bb, c 7→ b with the seed a|b.

start

a

b c a

b b b b c a

−1−2−3−4−5−6

1

0 1 2

0 1 0 0 1 2

n repu,0(n)
-1 1
-2 11
-3 10
-4 110
-5 101
-6 100
-7 1101

weight · · · 421

Positional (Uℓ = 2ℓ, V0 = 1,Vℓ = 3.2ℓ), despite the fact that∣∣µℓ(b)
∣∣ ̸= ∣∣µℓ(c)

∣∣ for all ℓ ≥ 1.
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Complications (3)

In the first example, the letters a and c occur only at levels of a
given parity in the tree, so the sketch can only be applied for
half the values of ℓ.
In the second example, the letter to the right of a c can never
be part of a shortest path to a column, so the sketch cannot be
applied to c.

Definition (Technical)

For j ∈ {0, . . . ,p − 1}, the set Ej is the set of letters c verifying
one of the following conditions:

There exists a node in Tµ,b|a labeled by c at a level
congruent to j mod p, in a column other than −2, that has a
younger sibling.
The node at level j and column −2 in Tµ,b|a is labeled by c,
it has a younger sibling labeled by d , and

∣∣µp−j(d)
∣∣ > 1.
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Main result

We let µ be a substitution, u a periodic point with period p and
seed b|a, and r ∈ {0, . . . ,p − 1}.

Theorem (K., Labbé, Stipulanti 2025)

The Dumont-Thomas numeration system associated with µ,u
and r is positional if and only if both of the following occur:

The map c 7→
∣∣µℓ(c)

∣∣ has a constant value Uℓ over Ej for all
ℓ, j such that ℓ+ j ≡ r mod p.
(Technical) For j ∈ {0, . . . , r − 1}, if the node at level j and
column −2 in Tµ,b|a is labeled by c and has a younger
sibling labeled by d with

∣∣µp−j(d)
∣∣ = 1, then∣∣µr−j(c)

∣∣ = Ur−j .
In this case, (Uℓ)ℓ and Vℓ =

∣∣µℓ(b)
∣∣ are the sequences of

weights of the system.
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Corollaries (1)

In some cases, the complications outlined above do not occur.
The first is the case of a primitive substitution.
We say that a letter is non-final in the substitution µ if it occurs
in the image of any letter at any position other than the last one.

Corollary

Let µ be a primitive substitution, u be a periodic point of µ with
seed b|a and period p, and r ∈ {0, . . . ,p − 1}. The
Dumont-Thomas complement system associated with µ,u and
r is positional if and only if the map c 7→

∣∣µℓ(c)
∣∣ is constant over

the non-final letters in µ for every ℓ.
In this case, the value of the constant is Uℓ, and Vℓ =

∣∣µℓ(b)
∣∣.
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Corollaries (2)

The second case where no complication occurs is that of the
original Dumont-Thomas numeration systems.

Corollary

Let µ be a substitution and u be a right-infinite fixed point of µ.
The Dumont-Thomas numeration system associated with µ and
u is positional if and only if the map c 7→

∣∣µℓ(c)
∣∣ is constant over

the non-final letters in µ for every ℓ.
In this case, the value of the constant is Uℓ.

Example

Consider the substitution µ : a 7→ abc, b 7→ aac, c 7→ a. The
non-final letters are a and b, and we can show by induction that
their images by µℓ have the same length for any ℓ. Thus, the
system is positional.
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Bertrand numeration systems

Bertrand numeration systems (Bertrand-Mathis, 1989; Charlier,
Cisternino, Stipulanti, 2022) are a special case of greedy
positional numeration systems, defined by either of the two
properties:

w ∈ rep(N) ⇔ w0 ∈ rep(N) for any nonempty w .
The lexicographically largest words of each length in
rep(N) are all prefixes of one another.

There are three kinds of Bertrand numeration systems:
Uℓ = ℓ+ 1 (trivial).
Uℓ = d1Uℓ−1 + d2Uℓ−2 + . . .+ dℓU0 + 1 where d1d2 · · · is
the quasi-greedy Rényi representation of 1 in some base β
(canonical).
Uℓ = d1Uℓ−1 + d2Uℓ−2 + . . .+ dℓU0 + 1 where d1d2 · · · is
the greedy Rényi representation of 1 in some simple Parry
base β (non-canonical).

The original Dumont-Thomas numeration systems have the
above properties.
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Simplifying the morphism

Let us study the case where µ has a right-infinite fixed point u.

Lemma
Let µ : A∗ → A∗ be a substitution such that the map c 7→

∣∣µℓ(c)
∣∣

is constant over the non-final letters in µ for every integer ℓ ≥ 0.
Then there exist an alphabet B ⊆ A, a substitution ν : B∗ → B∗

such that ν has only one non-final letter and a coding ϕ : A → B
such that ν and ϕ(u) define the same Dumont-Thomas
numeration system as µ and u.

A substitution that has a fixed point and only one non-final letter
is of the form

µ : a1 7→ ad1
1 a2,a2 7→ ad2

1 a3, . . . ,an 7→ adn
1 ak

for some n ≥ 1, 1 ≤ k ≤ n, d1 > 0 and d2, . . . ,dn ≥ 0.
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Fabre substitutions

Another approach to Bertrand numeration systems (Fabre,
1995): If β is a Parry number and the quasi-greedy Rényi
representation of 1 is (d1 · · · dk−1)(dk · · · dn)

ω, define the
substitution

µβ : 1 7→ 1d12, 2 7→ 1d23 . . . ,n 7→ 1dnk .

For instance, for β equal to the positive root of
x3 − x2 − x − 1 = 0, the quasi-greedy representation of 1 is
(110)ω and we find

µβ : 1 7→ 12, 2 7→ 13,3 7→ 1.

Theorem (Fabre, 1995)∣∣∣µℓ
β(1)

∣∣∣ is the Uℓ defined for the canonical Bertrand numeration
system for β. This numeration system is the Dumont-Thomas
numeration system associated with µβ and µ∞

β (1).
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Equivalence between the two systems (1)

The other two kinds of Bertrand numeration systems are also
associated with Dumont-Thomas numeration systems when β
is Parry.
The converse is not always true.

Example

Consider µ : a 7→ aab, b 7→ aaaa. The associated
Dumont-Thomas system is positional, with weight sequence
1,3,10,32, . . .. However, it is not equal to a Bertrand
numeration system: rep(9) = 23, but it should be 30.
If such a system were Bertrand associated with some β, the
quasi-greedy β-representation of 1 would be (23)ω, which
breaks the Parry conditions.
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Equivalence between the two systems (2)

Proposition (K., Labbé, Stipulanti 2025)

Let µ be a substitution of the form

µ : a1 7→ ad1
1 a2,a2 7→ ad2

1 a3, . . . ,an 7→ adn
1 ak

for some n ≥ 1, 1 ≤ k ≤ n, d1 > 0 and d2, . . . ,dn ≥ 0.
Construct the word d1d2 · · · = d1 · · · dk−1(dk · · · dn)

ω. The
Dumont–Thomas numeration system associated with µ and the
seed a1 is equal to a Bertrand numeration system if and only if
we have didi+1 · · · ≼lex d1d2 · · · for each i ≥ 1.
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Conclusion

Dumont-Thomas numeration systems, interpreting
substitutions as trees, are easily generalized to biinfinite
periodic points of substitutions.
Their positionality is completely understood.
In the case of the original Dumont-Thomas numeration
systems, the positional systems are those that correspond
to substitutions "in the style of Fabre".
Those systems are Bertrand numerations associated with
Parry numbers if and only if a lexicographic condition is
met.

Thank you!
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