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Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an additive 4-power.
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Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Theorem (Lietard and Rosenfeld 2020): Additive cubes are
avoidable over all subsets of Z of size 4, except possibly those
equivalent to {0, 1, 2, 3}.

Open Problem: Are additive squares avoidable over some finite
subset of Z?
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Rich words

▶ Question: How many distinct nonempty palindromes can a
word of length n contain?

▶ For insight, let’s build the word 0010120 one letter at a time.

0

00
001
0010
00101
001012
0010120

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is rich if it contains n distinct nonempty
palindromes.
▶ E.g., 001012 is rich, but 0010120 is not.

▶ An infinite word is rich if all of its finite factors are rich.
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Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?
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Our constructions

Define β : {0, 1}∗ → {0, 1}∗ and γ : {0, 1, 2}∗ → {0, 1, 2}∗ by

β(0) = 00001 γ(0) = 2

β(1) = 01101 γ(1) = 101

γ(2) = 10001

We show that

▶ B = βω(0) is rich and additive 5-power-free, and

▶ Γ = γω(1) is rich and additive 4-power-free.
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Proving richness

We make use of the following characterization.

Theorem (Droubay, Justin, and Pirillo 2001): An infinite word w is
rich if and only if every finite prefix of w has a unioccurrent
palindromic suffix.

For B, we use Walnut.

morphism b "0->00001 1->01101":

promote B b:

def FactorEq "?msd_5 Ak (k<n)=>(B[i+k]=B[j+k])":

def Occurs "?msd_5 (m<= n) & ( Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (B[i+k]=B[i+j])":

def BisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

For Γ, we use an inductive proof with several cases.
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Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).
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The Essential Idea of the Template Method

▶ Any long abelian/additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from
abelian/additive powers – there are only finitely many possible
templates for these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.
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Templates for abelian powers

▶ A template for abelian squares is a 4-tuple

[a0, a1, a2, d⃗ ]

letters or ε vector

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and ψ(w1)− ψ(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an abelian square.
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Every long-enough instance of a template must have come from an
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Conditions on h facilitate the enumeration of the parents of a
given template, and ensure that each template has only finitely
many ancestors (parents, grandparents, etc.)
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Templates for additive powers

▶ Idea: For additive powers, we’d like to replace Parikh vectors
with vectors having just two entries (length and sum).

▶ Caveat: The morphism must have some special structure.
▶ β(0) = 00001 and β(1) = 01101, so for all x ∈ {0, 1},

|β(x)| = 5 + 0x and
∑

β(x) = 1 + 2x .

▶ γ(0) = 2, γ(1) = 101, and γ(2) = 10001, so for all
x ∈ {0, 1, 2},

|γ(x)| = 1 + 2x and
∑

γ(x) = 2 + 0x .

▶ We say that these morphisms are affine.
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Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?
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Thank you!
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