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• w – binary word on {0,1};

• w contains a subpalindrome of length
⌈
|w |
2

⌉
;
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• r , s ∈ {0,1, . . . ,n − 1}∗, (r , s) is an MP-extension of w
↔ rws is minimal-palindromic;
• (r , s) is an SMP-extension↔ |r |+ |s| is the least

possible;

• MP-ratio of the word w :
|rws|
|w |

, (r , s) – SMP-extension

of w .
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Well-definedness for n ⩾ 4

Theorem (A., Bašić; 2021)
Each n-ary word has an MP-extension.

Proof (sketch).
Let w ∈ {0,1, . . . ,n − 1}∗, n ⩾ 4.
Let M = 2⌈ n

2 ⌉ + 2⌊ n
2 ⌋−1 − 3; exceptionally, if n = 4 or n = 5, we

define M = 4, respectively M = 8 instead. Let:

r = 0l01l1 . . . (n − 2)ln−2 , s = 1r12r2 . . . (n − 1)rn−1 ,

where l0 = M|w | − |w |0 and

li =
{

(M − 2i + 1)|w |, for i = 1, . . . , ⌈ n
2⌉ − 1;

(2n−1−i − 1)|w | − |w |i , for i = ⌈ n
2⌉, . . . ,n − 2,

while rn−1 = M|w | − |w |n−1 and

ri =

{
(2i − 1)|w | − |w |i , for i = 1, . . . , ⌈ n

2⌉ − 1;
(M − 2n−1−i + 1)|w |, for i = ⌈ n

2⌉, . . . ,n − 2.

Then (r , s) is an MP-extension of w . ■
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Each n-ary word has an MP-extension.

Proof (sketch).
Let w ∈ {0,1, . . . ,n − 1}∗, n ⩾ 4.
Let M = 2⌈ n

2 ⌉ + 2⌊ n
2 ⌋−1 − 3; exceptionally, if n = 4 or n = 5, we

define M = 4, respectively M = 8 instead. Let:

r = 0l01l1 . . . (n − 2)ln−2 , s = 1r12r2 . . . (n − 1)rn−1 ,

where l0 = M|w | − |w |0 and

li =
{

(M − 2i + 1)|w |, for i = 1, . . . , ⌈ n
2⌉ − 1;

(2n−1−i − 1)|w | − |w |i , for i = ⌈ n
2⌉, . . . ,n − 2,

while rn−1 = M|w | − |w |n−1 and

ri =

{
(2i − 1)|w | − |w |i , for i = 1, . . . , ⌈ n

2⌉ − 1;
(M − 2n−1−i + 1)|w |, for i = ⌈ n

2⌉, . . . ,n − 2.

Then (r , s) is an MP-extension of w . ■



And now there
are four

Kristina Ago

Introduction

Binary case
Definitions

Some interesting
roles of
subpalindromes

The main theorem

n-ary case
Definitions

Well-definedness for
n ⩾ 4

On bounding the
MP-ratio from above

Ternary case
The main theorem

Quaternary
case
The main theorem

The proof

Propositions 1–2

Some notation

Proposition 3

Propositions 4–5

Putting everything
together

Well-definedness for n ⩾ 4
Theorem (A., Bašić; 2021)
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Putting everything
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On bounding the MP-ratio from
above

Theorem (A., Bašić; 2021)
Let w be an n-ary word for n ⩾ 4, and let

M =


4, if n = 4;
8, if n = 5;
2⌈

n
2 ⌉ + 2⌊

n
2 ⌋−1 − 3, if n ⩾ 6.

Then the MP-ratio of w is not greater than nM.

Theorem (A., Bašić; 2021)
The optimal upper bound on the MP-ratio is not less than
2n.
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The optimal upper bound on the MP-ratio is not less than
2n.



And now there
are four

Kristina Ago

Introduction

Binary case
Definitions

Some interesting
roles of
subpalindromes

The main theorem

n-ary case
Definitions

Well-definedness for
n ⩾ 4

On bounding the
MP-ratio from above

Ternary case
The main theorem

Quaternary
case
The main theorem

The proof

Propositions 1–2

Some notation

Proposition 3

Propositions 4–5

Putting everything
together

On bounding the MP-ratio from
above

Theorem (A., Bašić; 2021)
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On optimality

Now we know that the optimal upper bound on the MP-ratio
for n ⩾ 4 is somewhere between

2n and ∼ 2
n
2 n,

and it remains an open problem to narrow (or even better,
close) this gap.
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Putting everything
together

The main theorem

Theorem (A., Bašić; 2021)
The MP-ratio is well-defined in the ternary case, it is bounded
from above by 6 and this upper bound is the best possible.

Proof (sketch).

f (w) = 02|w|−|w|022|w|−|w|2−g′(w,0,2) w 2g′(w,0,2)12|w|−|w|1

f ′(w) = 12|w|−|w|12g′(w̃,0,2) w 22|w|−|w|2−g′(w̃,0,2)02|w|−|w|0

g′(w , a, b) = max
({

2
∣∣w [i, |w |]

∣∣
a −

∣∣w [i, |w |]
∣∣
b : i = 1, 2, . . . , j(a,w)

}
∪ {0}

)
,

where j(a,w) denotes the position of the last occurence of a in w , and j(a,w) = 0
if a does not occur in w . ■

Theorem (A., Bašić; 2022)
Let u ∈ {1,2}∗, t , v ∈ 2∗ and let p and q be subpalindromes of tu
and uv, respectively. If |p|+ |q| > 2|u|, then

|u|1 ⩽
|tv | − 1
|tv |

|tuv |2.
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where j(a,w) denotes the position of the last occurence of a in w , and j(a,w) = 0
if a does not occur in w . ■
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Let u ∈ {1,2}∗, t , v ∈ 2∗ and let p and q be subpalindromes of tu
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Quaternary case

Theorem (A., Bašić; 2025+)
The MP-ratio of any 4-ary word is at most 8.

Proof (sketch).
We define two extensions of w , and show that at least one
of them is an MP-extension.

02|w|−|w|0 32|w|−|w|3−g(w,0,3)2g(w̃,1,2) w 3g(w,0,3)22|w|−|w|2−g(w̃,1,2)12|w|−|w|1 ;

12|w|−|w|1 22|w|−|w|2−g(w,1,2)3g(w̃,0,3) w 2g(w,1,2)32|w|−|w|3−g(w̃,0,3)02|w|−|w|0 .

Let us call them f1(w) and f2(w), respectively.
We have |f1(w)| = |f2(w)| = 8|w |, and we prove that at least
one of the words f1(w) and f2(w) does not have a
subpalindrome whose length exceeds 2|w |.
This will follow by Propositions 1–5. ■
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Proposition
The length of an arbitrary subpalindrome of the form 0p0 in each of the
words f1(w) and f2(w) is less than or equal to 2|w |.

Proof (sketch).
Case analysis for f1(w), and for f2(w) we use that f2(w) = f̃1(w̃). ■

Proposition
The length of an arbitrary subpalindrome of the form 1p1 in each of the
words f1(w) and f2(w) is less than or equal to 2|w |.

Proof.
Analogous to the previous one (where 0s and 1s have switched roles, as
well as 2s and 3s, and as well as f1(w) and f2(w)). ■
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Some notation

Definition
Let p be a subpalindrome of a word z.
• A descriptor of p (with respect to z) is the set P defined

by P = {P1,P2, . . . ,P|p|} where P1 < P2 < · · · < P|p|
and p = z[P1]z[P2] . . . z[P|p|]. If a is a letter, then |P|a
denotes the value |{Pi ∈ P : z[Pi ] = a}|.
• The mapping σP : P → P, defined by

σP : Ps 7→ P|p|−s+1 is called mirroring with respect to P.

Definition
Let p and q be subpalindromes of some word z, and let P
and Q be their descriptors. We say that Q is offset to the
right of P if and only if for each s, s′ such that s ∈ P, s′ ∈ Q,
s′ ⩽ s, we have σQ(s′) > σP(s).
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02|w|−|w|0 32|w|−|w|3−g(w,0,3)2g(w̃,1,2) w 3g(w,0,3)22|w|−|w|2−g(w̃,1,2)12|w|−|w|1 ;

12|w|−|w|1 22|w|−|w|2−g(w,1,2)3g(w̃,0,3) w 2g(w,1,2)32|w|−|w|3−g(w̃,0,3)02|w|−|w|0 .

Proposition
At least one among the words f1(w) and f2(w) does not contain a
subpalindrome of the form 2p2 longer than 2|w |.

Proof (sketch).
Suppose the contrary: in both the words f1(w) and f2(w) a longest
subpalindrome of the form 2p2 is longer than 2|w |. They are of the form
2|t|2+g(w̃,1,2)qw 2|t|2+g(w̃,1,2), where qw ∈ Subw(w3g(w,0,3)) and t ∈ Pref(w),
respectively 2|v|2+g(w,1,2)pw 2|v|2+g(w,1,2), where pw ∈ Subw(3g(w̃,0,3)w)
and v ∈ Suff(w).

• P|pw | < Q1:✓
• Q is not offset to the right of P:✓
• Q is offset to the right of P: Time to roll up our sleeves.

■
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exists, such that −→ȷi ⩾ ji and −→ȷi ∈ P, and if σP(
−→ȷi ) > m1, then
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ȷ′i be the largest integer, if it

exists, such that
←−
ȷ′i ⩽ j ′i and
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←−
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←−
ȷ′i ); otherwise (that is, if

←−
ȷ′i does not exist,
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←−
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−→ȷi ) > m1, then
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Dissection

Definition
Let τ be the largest integer such that jτ (from the previous
procedure) is defined. Then the sequence x1, x2, . . . , xτ+1,
with xi = z[ji−1, ji − 1] for 1 ⩽ i ⩽ τ and xτ+1 = z[jτ , |3m1w |],
is called the dissection of w, and the value τ is called the
tally of the dissection (clearly, those notions depend not only
on w but also on m1, m2, P, Q, but all these parameters will
always be clear from the context).
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Refined dissection

Definition

We also define the refined dissection of w as follows. Let
j♢0 , j

♢
1 , j

♢
2 , . . . be the sequence defined in the same way as

j0, j1, j2, . . . but with j♢0 = σQ(
←−−−−
|3m1w |) instead of j0 = m1 + 1.

Let x ′i = z[ji−1, j♢i−1 − 1] and x ′′i = z[j♢i−1, ji − 1] for 1 ⩽ i ⩽ τ ,
while x ′τ+1 = z[jτ , j♢τ − 1] and x ′′τ+1 = z[j♢τ , |3m1w |] if j♢τ is
defined, respectively x ′τ+1 = z[jτ , |3m1w |] if j♢τ is undefined
(and x ′′τ+1 is undefined in this last case). Then the sequence
x ′1, x

′′
1 , x

′
2, x
′′
2 , . . . is the refined dissection of w.
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Further preparation

• Let z = 3m1 w3m2 , w ∈ {0, 3}∗.
• On the set {1, 2, . . . , |z|}, define:

s ∼ s′ if there exists i ∈ Z such that s′ = (σQ ◦ σP)
i (s).

• If s ∈ P/Q, then the equivalence classes [s]∼ and [σP/Q(s)]∼ will be called
twins.

• A class that is not the twin of any other class will be called twinless.
• We also define the following relation:

s ⌢ s′ if s and s′ are in the same ∼-class or in two twin classes.

• Let M1 = [1,m1]N, M2 = [|w |+ m1 + 1, |z|]N, M = M1 ∪M2, and let

M = {s ∈ M : [s]⌢ \M ⊆ P ∩ Q},

with M1 and M2 similarly defined.
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s ∼ s′ if there exists i ∈ Z such that s′ = (σQ ◦ σP)
i (s).

• If s ∈ P/Q, then the equivalence classes [s]∼ and [σP/Q(s)]∼ will be called
twins.

• A class that is not the twin of any other class will be called twinless.
• We also define the following relation:

s ⌢ s′ if s and s′ are in the same ∼-class or in two twin classes.

• Let M1 = [1,m1]N, M2 = [|w |+ m1 + 1, |z|]N, M = M1 ∪M2, and let

M = {s ∈ M : [s]⌢ \M ⊆ P ∩ Q},

with M1 and M2 similarly defined.
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The mappings σP and σQ act as follows:

1 σP7→ 23
σQ7→ 6 σP7→ 17

σQ7→ 11 σP7→ 11
σQ7→ 17 σP7→ 6

σQ7→ 23 σP7→ 1;

2 σP7→ 21
σQ7→ 8 σP7→ 15

σQ7→ 13 σP7→ 9
σQ7→ 19 σP7→ 4

σQ7→ 25;

26
σQ7→ 3 σP7→ 20;

14
σQ7→ 14;

24
σQ7→ 5 σP7→ 18

σQ7→ 10 σP7→ 12
σQ7→ 16 σP7→ 7

σQ7→ 22.

M = {1, 2, 25}.
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Ξ0 = {22,24} and Ξ3 = {14,20}.
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Little gaps

We have the following bounds on |Ξa|:
a) |Ξ0| is greater than or equal to the total number of

0-∼-classes.
b) |Ξ3| is greater than or equal to the sum of the following

two values:
• the number of 3-⌢-classes that contain some element

of M \M ;
• the number of 3-⌢-classes that do not contain any

element of M.

In fact, we have:

|Ξ0|+ |Ξ3| ⩾
|w |3

2(τ + 1)
.
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Lemma 1

Lemma
Let w ∈ {0,3}∗, and let m1,m2 be nonnegative integers
such that m1 ⩽ 3g(w̃ ,0,3) and m2 ⩽ 3g(w ,0,3). Let p and q be
subpalindromes of 3m1w and w3m2 , respectively. Let P and
Q be descriptors of p and q (with respect to 3m1w3m2),
where maxP ⩽ |3m1w | and the smallest m1 elements of P
are 1,2, . . . ,m1, and minQ ⩾ m1 + 1 and the largest m2
elements of Q are |3m1w |+ 1, |3m1w |+ 2, . . . , |3m1w3m2 |,
and suppose that Q is offset to the right of P. Then

|p|+ |q| ⩽ 2|w |+ m − |w |3
2(τ + 1)

,

where m = m1 + m2 and τ is the tally of the dissection of w.
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Lemma 2

Lemma
Let w ∈ {0,1,2,3}∗ where |w |0 ⩽ |w |1 ⩽ |w |2 ⩽ |w |3, and
let m1,m2 be nonnegative integers such that m1 ⩽ 3g(w̃ ,0,3)

and m2 ⩽ 3g(w ,0,3). Let p and q be subpalindromes of 3m1w
and w3m2 , respectively. Let P and Q be descriptors of p and
q (with respect to 3m1w3m2), where maxP ⩽ |3m1w | and the
smallest m1 elements of P are 1,2, . . . ,m1, and
minQ ⩾ m1 + 1 and the largest m2 elements of Q are
|3m1w |+ 1, |3m1w |+ 2, . . . , |3m1w3m2 |. Suppose that Q is
offset to the right of P. Then, if u = (3m1w3m2)[Q1,P|p|] if
Q1 ⩽ P|p|, and u = ε otherwise, we have

|p|+ |q| ⩽ 4|w |3 + 2|u|2 + 4|w |0.
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Propositions 4–5

Proposition
At least one among the words f1(w) and f2(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w |.

Proposition
One of the following is true: the word f1(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w |, or the
word f2(w) does not contain a subpalindrome of the form
3p3 longer than 2|w |. Analogously, the word f1(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w |,
or the word f2(w) does not contain a subpalindrome of the
form 2p2 longer than 2|w |.
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Putting everything together

Recall: we claim that at least one of the words f1(w) and
f2(w) does not have a subpalindrome whose length
exceeds 2|w |.

f1(w) f2(w)
0p0
1p1
2p2
3p3
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