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Various measures of the degree of palindromicity of
words have been introduced and studied in the
literature.

One such measure, which is the main topic of the
present talk, is the so-called MP-ratio.

It is a rational number greater than or equal to 1, such
that, the larger it is, the more the given word is
“palindromic”.

The concept was originally defined only for binary
words, and its extension to larger alphabets was left as
an open problem.
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Let w be an n-ary word for n > 4, and let
4, ifn=4;
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2lzl y2lzl-1_3  jfn>6.
Then the MP-ratio of w is not greater than nM.

Theorem (A., Basi¢; 2021)
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s’ < s, we have oq(s') > op(S).
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02|w|—\w|032|w|—\w|3—g(w,0,3)2g(W1,2) w 39(w:0.3)02[w|—|wlz Q(Wa1,2)12\W\—|W|1.

12Iwl=1wly 32|W|*\Wla*Q(VV,Ov3)O2\W\*|W|o'

Proposition

At least one among the words fi(w) and f.(w) does not contain a
subpalindrome of the form 2p2 longer than 2|w/|.

Proof (sketch).

Suppose the contrary: in both the words f;(w) and a longest
subpalindrome of the form 2p2 is longer than 2|w|. They are of the form
2ltleto.1.2) g oltl+9(.1.2) 'where g, € Subw(w39*:%)) and t € Pref(w),
respectively , where p, € Subw(39*:%:3) )
and v € Suff(w).

L4 P\pwl < @

® Qis not offset to the right of P:
® Qs offset to the right of P: Time to roll up our sleeves.
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3g(W,0,3) ng(w7073)

Let w € {0,1,2,3}*, and let my, m, be nonnegative integers such
that my < 39(:03) and m, < 39(":03)_ Let p and g be
subpalindromes of 3™ w and w3™, respectively. Let P and Q be
descriptors of p and g (with respect to 3™ w3™), where

- max P < |3™ w| and the smallest m; elements of P are
1,2,...,my,and min Q > my + 1 and the largest m, elements of
Qare [3™Mw|+1,]3™Mw|+2,...,|3™w3™|, and suppose that Q
is offset to the right of P.
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The proof
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Some notation

Proposition 3

Setting the stage

We write z = 3™ w3™. Define the values jy, jy. ji, /i

1. o=m +1;

2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 77 > jand 77 € P, and if p(7]) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if
ap(ﬁ) < my), jj is undefined and the procedure stops;

. as follows:
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We write z = 3™ w3™. Define the values jy, jy, j1, /i, . .. as follows:

1. o=m +1;

2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 7/ > jiand 77 € P, and if op(7;) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if
ap(ﬁ) < my), ji is undefined and the procedure stops;

3. assuming that j/ is defined, let j, be the largest integer, if it
<_

exists, such that 7; <jiand j; € Q,andif og( ;) < [3™w]|,

then let ji 1 = 0g( 7} ); otherwise (that is, if j; does not exist,

orif oq( ;) > |3™wl), ji+1 is undefined and the procedure
stops.
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2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 77 > jand 77 € P, and if p(7]) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if
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We write z = 3™ w3™. Define the values jy, jy, j1, /i, . .. as follows:

1. o=m +1;

2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 77 > jand 77 € P, and if p(7]) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if

ap(ﬁ) < my), ji is undefined and the procedure stops;

3. assuming that j/ is defined, let j, be the largest integer, if it
<_

exists, such that 7; <jiand j; € Q,andif og( ;) < [3™w]|,

then let ji 1 = 0g( 7} ); otherwise (that is, if j; does not exist,

orif oq( ;) > |3™wl), ji+1 is undefined and the procedure
stops.
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We write z = 3™ w3™. Define the values jy, jy, j1, /i, . .. as follows:

1. o=m +1;

2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 77 > jand 77 € P, and if p(7]) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if

ap(ﬁ) < my), ji is undefined and the procedure stops;

3. assuming that j/ is defined, let j, be the largest integer, if it
<_
exists, such that 7; <jiand j; € Q,andif og( ;) < [3™w]|,

then let ji 1 = 0g( 7} ); otherwise (that is, if j; does not exist,
orif oq( ;) > |3™wl), ji+1 is undefined and the procedure
stops.
Jo JT') Jo
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We write z = 3™ w3™. Define the values jy, jy, j1, /i, . .. as follows:

1. o=m +1;

2. assuming that j; is defined, let 7 be the smallest integer, if it
exists, such that 77 > jand 77 € P, and if p(7]) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if

ap(ﬁ) < my), ji is undefined and the procedure stops;

3. assuming that j/ is defined, let j, be the largest integer, if it
<_
exists, such that 7; <jiand j; € Q,andif og( ;) < [3™w]|,

then let ji 1 = 0g( 7} ); otherwise (that is, if j; does not exist,
orif oq( ;) > |3™wl), ji+1 is undefined and the procedure
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assuming that ji is defined, let 7; be the smallest integer, if it
exists, such that 7/ > jiand 77 € P, and if op(7;) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if
ap(ﬁ) < my), ji is undefined and the procedure stops;
assuming that ji is defined, let j, be the largest integer, if it
<_
exists, such that 7; <jiand j; € Q,andif og( ;) < [3™w]|,
then let ji 1 = 0g( 7} ); otherwise (that is, if j; does not exist,
orif oq( ;) > |3™wl), ji+1 is undefined and the procedure
stops.
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exists, such that 7/ > jiand 77 € P, and if op(7;) > my, then
let ji = op(77); otherwise (that is, if 7/ does not exist, or if
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Dissection

Definition

Let T be the largest integer such that j. (from the previous
procedure) is defined. Then the sequence X1, X2, ..oy Xrgq,
with x; = z[ji_1,ji — 1] for1 <i < 7 and x;,1 = z|[j;, |[3™M w|],
is called the dissection of w, and the value T is called the
tally of the dissection (clearly, those notions depend not only
on w but also on my, mo, P, Q, but all these parameters will
always be clear from the context).
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The main theorem

Refined dissection

Definition

We also define the refined dissection of w as follows. Let

J§+J5 s - . be the sequence defined in the same way as
P .

JosJ1, )2, - - - but with j§ = oq(|3™ w|) instead of jo = my + 1.

Let x| = z[ji_1,j* y — 1] and x!' = z[j¢ ,,ji—1] for 1 <i < 7,

while x__, | = z|j-,j¢ — 1] and x!_, = z[j¢, [3™ w|] if j¢ is

defined, respectively x_, = z[j.,|3™ w|] if j* is undefined

(and x!', , is undefined in this last case). Then the sequence

X1, X{,X5, X5, ... Is the refined dissection of w.
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X1, X{,X5, X5, ... Is the refined dissection of w.
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U oo fises .- but with j§ = oq(]13™ wl) instead of o = my + 1.
Let x| = z[ji_1,j* y — 1] and x!' = z[j¢ ,,ji—1] for 1 <i < 7,
while x__, | = z|j-,j¢ — 1] and x!_, = z[j¢, [3™ w|] if j¢ is

Definitions

"

defined, respectively x_, = z[j.,|3™ w|] if j* is undefined

(and x!', , is undefined in this last case). Then the sequence
X1, X{,X5, X5, ... Is the refined dissection of w.
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® Letz=3Mw3M, we {0,3}*.
® Ontheset{1,2,...,|z|}, define:

s~ &' if there exists i € Z such that ' = (oq o op)'(S).

°® If s € P/Q, then the equivalence classes [s]~ and [op,q(S)]~ will be called
twins.
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Letz=3Mw3M, w € {0,3}*.
Onthe set {1,2,...,]|z|}, define:

s~ &' if there exists i € Z such that ' = (oq o op)'(S).
If s € P/Q, then the equivalence classes [s]~ and [op,q(s)]~ will be called

twins.

A class that is not the twin of any other class will be called twinless.
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Letz=3Mw3M, w € {0,3}*.
Ontheset {1,2,...,|z|}, define:
s ~ s’ if there exists i € Z such that 8’ = (o o op)/(8).

If s € P/Q, then the equivalence classes [s]~ and [op,q(s)]~ will be called
twins.

A class that is not the twin of any other class will be called twinless.
We also define the following relation:

s ~ §'if sand s’ are in the same ~-class or in two twin classes.
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Further preparation
Letz=3Mw3M, w € {0,3}*.
Ontheset {1,2,...,|z|}, define:
s ~ s’ if there exists i € Z such that 8’ = (o o op)/(8).

If s € P/Q, then the equivalence classes [s]~ and [op,q(s)]~ will be called
twins.

A class that is not the twin of any other class will be called twinless.
We also define the following relation:

s ~ &' if sand s’ are in the same ~-class or in two twin classes.
Let My = [1, ]y, Mo = [|w| + my +1,|2|]n, M = M; U M,, and let
M ={seM:[s]-\MC PNQ},

with and M® similarly defined.
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1 2 3 ® 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 &, 22 23 24 25 26
: X ! x)! “xz’ x5! "xaf x5 "x; x;!

The mappings op and o act as follows:

1823863817311 5811831758623 23%51;

2% 21738% 1573135973195 473 25

26 3 3% 20;

1453 14;

2473575183105 125316 5773 22,

ME = (1,2,25).
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Little gaps

For a € {0, 3}, we introduce the following notation:

a=

U

Xe{P,Q}

({m +1<s<|3Mw|: z[s] = a} \ X).
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For a € {0, 3}, we introduce the following notation:

The

Za= U ({m+1<s<[3™mw|: 2[s] = a}\ X).
Xe{P,Q}

MP-ratio from above

Jo I By h B i ks Jo foyh ks
|33§§§3|§6§6§§§6§6§3|36*6|§§

The main theorem

[e8)
[e8)
|w

1 2 3 8 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ®, 22 23 24 25 26
L L -1 11 L1 1

7 11 7 17 7 1
X4 X4 X5 X5 X3 )(3 X4 Xy

=o = {22,24} and =5 = {14,20}.
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inary We have the following bounds on |=;|:
a) |=o| is greater than or equal to the total number of
0-~-classes.

b) |=3]| is greater than or equal to the sum of the following
two values:

e the number of 3-~-classes that contain some element
of M\ M®;
e the number of 3-~-classes that do not contain any

element of M.
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inary We have the following bounds on |=;|:
a) |=o| is greater than or equal to the total number of
0-~-classes.

b) |=3]| is greater than or equal to the sum of the following
two values:

e the number of 3-~-classes that contain some element
of M\ M®;

e the number of 3-~-classes that do not contain any
element of M.

In fact, we have:

- = L4E
= =3 > —.
| 0‘+’ 3| 2(7’+1)
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Lemma 1

Lemma

Letw € {0,3}*, and let m{, m> be nonnegative integers
such that my < 39(W.0.3) and m, < 39w:03)_ Let p and q be
subpalindromes of 3™ w and w3, respectively. Let P and
Q be descriptors of p and q (with respect to 3™ w3 ),
where max P < |[3™ w| and the smallest my elements of P
are1,2,...,my, and min Q > my + 1 and the largest mo
elements of Q are |3™w| +1,|3Mw| +2,...,|3Mw3™|,
and suppose that Q is offset to the right of P. Then

4E

<2 — oAy
ol + 141 < 2wl +m— 5 T

where m = my + my and 7 is the tally of the dissection of w.
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Lemma 2

Lemma

Letw € {0,1,2,3}* where |w|y < |w|1 < |w|2 < |w(3, and
let my, m, be nonnegative integers such that m; < 39(#.0,3)
and m, < 39W.03) [ et p and q be subpalindromes of 3™ w
and w3™2, respectively. Let P and Q be descriptors of p and
g (with respect to 3™ w3™2), where max P < |3™w/| and the
smallest my elements of P are 1,2, ..., my, and

min Q > my + 1 and the largest m, elements of Q are
I3Mw| +1,3Mw|+2,...,|3™Mw3™|. Suppose that Q is
offset to the right of P. Then, if u = (3™ w3™)[Qy, Pjp|] if
Qi < Py, and u = ¢ otherwise, we have

Pl + |q| < 4|w(s + 2|ul2 + 4|wlo.



Propositions 4-5

«O» «Fr « >
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Propositions 4-5

Proposition

At least one among the words fi(w) and f(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w/|.
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Propositions 4-5

Proposition
At least one among the words fi(w) and f(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w/|.

Proposition

One of the following is true: the word f;(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w|, or the
word f,(w) does not contain a subpalindrome of the form
3p3 longer than 2|w|.
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Propositions 4-5

Proposition
At least one among the words fi(w) and f(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w/|.

Proposition

One of the following is true: the word f;(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w|, or the
word f,(w) does not contain a subpalindrome of the form
3p3 longer than 2|w|. Analogously, the word f;(w) does not
contain a subpalindrome of the form 3p3 longer than 2|w|,
or the word f,(w) does not contain a subpalindrome of the
form 2p2 longer than 2|w|.



Putting everything together

DA
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Putting everything together

Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

A(w) | fo(w)
e o e 0p0
1p1
2p2
3p3

Putting
together
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

A(w) | fo(w)
e o e 0p0 | x %
1p1

2p2
3p3

Putting
together
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

fi(w) | f(w)

e e 0p0 |  x v

e 1p1 X X
2p2

Putting
together
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

(W) | f(w)

e e 0p0 | x Y

e 1p1 X X
2p2 X

Putting
together
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

h(w) | R(w)

Mprai o anove 0p0 % %

e e 1p1 X X
2p2 X

The main heorem 3p3 | X

Putting
together




And now there
are four

Kristina Ago PUttIng everythlng together

Recall: we claim that at least one of the words f; (w) and
f-(w) does not have a subpalindrome whose length
exceeds 2|w/|.

i fi(w) | f(w)
MP-al fog sbove 0p0 % %
e e 1p1 X X
2p2 X
The main heorem 3p3 | X
or v

Putting
together
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Recall: we claim that at least one of the words f; (w) and

f>(w) does not have a subpalindrome whose length
exceeds 2|w|.

h(w) | R(w)

Mprai o anove 0p0 % %

e e 1p1 X X
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3p3 | €
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Recall: we claim that at least one of the words f; (w) and
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Recall: we claim that at least one of the words f; (w) and
f-(w) does not have a subpalindrome whose length
exceeds 2|w/|.

A(w) | ()
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Recall: we claim that at least one of the words f; (w) and
f-(w) does not have a subpalindrome whose length
exceeds 2|w/|.

A(w) | ()
MP-al fog sbove 0p0 X %
e Ga—— 1p1 X X
2p2 X X
The main theorem 3p3 € X
or v

Putting
together
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