Glimpses into recent developments in subword combinatorics

Markus A. Whiteland

Department of Computer Science Loughborough University

m.a.whiteland@lboro.ac.uk

Based on joint works with A. Renard, M. Rigo

30/06/2025 WORDS'25 @ Nancy

- Introduction/motivation
 - Subwords
 - Binomial coefficients of words

- q-deformations
 - Definitions
 - Properties
 - Deformations of known results

- Concluding remarks
 - Ongoing and future work

Introduction

Subwords

Subwords in the sciences

Binomial coefficient of words

Definition

v is a subword of u if v can be obtained by deleting letters from u.

- Example: a a b is a subword of a b b a b
 - Note: sometimes called scattered subwords or scattered factors.
 - Not the same as factors; a factor is a subword but not always vice versa.
- In this talk: A^* is the set of finite words over alphabet A.
 - Always finite alphabets.
 - a, b, c, ... indicate letters from A.
 - u, v, w, ... indicate words from A^* .

- Practical problems call for reconstruction of data from subwords.
 - data transmission over lossy channels;
 - sequence kernels (in ML for text, biosequence, and time-series classification)
 as features capturing shared non-contiguous patterns;
 - protein sequence analysis in bioinformatics.
- Longest common subsequence, shortest common supersequence
 - with gap constraints (Adamson et al., WORDS'23)
- Language theory
 - Downward closures
- Logical theories for the subword relation
 - Halfon et al. (LICS'17)

- Simon's congurence
 - (near-)k-universality
 - Fleischmann et al.
- Palindromic subsequences
 - (Ago & Bašić WORDS'25)
- Jumbled subwords
 - (Fleischmann et al. DLT'25)
- binomial equivalence and complexity functions
 - (Rigo & co-authors since WORDS'13)
- multidimensional binomial coefficients
 - (Golafshan & Rigo WORDS'25)
- Binomial coefficients in generalised Pascal's triangle
 - Leroy, Rigo, & Stipulanti
- ... (Apologies for missing many of the audience's works!)

Definition

For words $u, v \in A^*$, $\binom{u}{v}$ is the number of occurrences of v as a subword of u.

Example

$$\binom{abbaba}{ab} = 2$$

- Extends usual binomial coefficients over N
 - unary free monoid \rightarrow free monoids A^* .

•
$$\binom{n}{m} = \binom{a^n}{a^m}$$

- Kalashnik's reconstruction problem (1972): Determine the function f such that f(n) is the least integer k such that any word u of length n has a unique vector $\binom{u}{x}_{x \in A^k}$.
 - Dudik & Schulman (2003)
 - Krasikov & Roditty (1997)
- Schützenberger's guessing game for reconstruction of an unknown word. Queries of the form: "What is $\binom{?}{x}$ "
 - Fleischmann et al. (2021)
 - Richomme & Rosenfeld (STACS 2023)

Theorem (Eilenberg's p-group languages, 1976)

Let p be a prime. A language is a p-group language if and only if it is a Boolean combination of languages of the form $L_{v,r,p} := \{u \in A^* \mid \binom{u}{v} \equiv r \pmod{p}\}$.

For any word u of length n: $\sum_{x \in A^k} \binom{u}{x} = \binom{n}{k}$

Over N

Pascal's recurrence:

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Chu-Vandermonde identity:

$$\binom{n+m}{k} = \sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j}$$

Over A^*

$$\binom{ua}{vb} = \binom{u}{vb} + \delta_{a,b} \binom{u}{v}$$

$$\begin{pmatrix} uw \\ v \end{pmatrix} = \sum_{v_1 v_2 = v} \begin{pmatrix} u \\ v_1 \end{pmatrix} \begin{pmatrix} w \\ v_2 \end{pmatrix}$$

Gaussian binomial coefficients

q-deformations

Gaussian binomial coefficients

q-binomial coefficients of words

Properties

q-analogs of theorems

- A q-deformation of an identity/expression is a generalisation involving a new parameter q that returns the original identity/expression in the limit $q \rightarrow 1$.
- E.g.,
 - *q*-natural numbers:

$$[n]_q = \frac{1-q^n}{1-q} = 1+q+\cdots+q^{n-1}$$

• *q*-factorials:

$$[n]_q! = [n]_q[n-1]_q \cdots [2]_q[1]_q$$

• Gaussian binomial coefficients:
$$\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q![k]_q!}$$

- Always a polynomial.
- $\binom{4}{2}_q = 1 + q + 2q^2 + q^3 + q^4$
- Coefficient of q^d is the number of binary words with k many bs and d many inversions;
 - abba and baab have two inversion.

Binomial coefficients over N

Pascal's recursion

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Vandermonde identity

$$\binom{n+m}{k} = \sum_{j} \binom{n}{j} \binom{m}{k-j}$$

• ...

Gaussian binomial coefficients

• *q*-Pascal recursion

$$\binom{n+1}{k+1}_q = q^{k+1} \binom{n}{k+1}_q + \binom{n}{k}_q$$

• *q*-Chu-Vandermonde identity

$$\binom{n+m}{k}_q = \sum_j q^{j(m-k+j)} \binom{n}{j}_q \binom{m}{k-j}_q$$

•

Not only nice, but they have several interesting/useful interpretations

- $\binom{n}{k}_q$ is the number of dimension-k subspaces of \mathbb{F}_q^n (q a prime power)
- $[q^r] {n+k \choose k}_q$ is the number of ways throwing r indistinguishable balls into k indistinguishable bins, each containing at most n balls.

q-deformations

Gaussian binomial coefficients

q-binomial coefficients of words

Properties

q-analogs of theorems

Based on: A. Renard, M. Rigo, W.: Introducing *q*-deformed binomial coefficients of words. *J Algebr Comb* **61**:25 (2025). https://doi.org/10.1007/s10801-025-01384-9

A. Renard, M. Rigo, W.: q-Parikh matrices and q-deformed binomial coefficients of words, Discrete Mathematics, **348**:5 (2025). https://doi.org/10.1016/j.disc.2024.114381

- Recall the q-Pascal recursion
- and the Pascal-like recursion

$$\binom{n+1}{k+1}_q = q^{k+1} \binom{n}{k+1}_q + \binom{n}{k}_q$$
$$\binom{ua}{vb} = \binom{u}{vb} + \delta_{a,b} \binom{u}{v}$$

Definition

Define the q-binomial coefficient $\binom{u}{v}_{q}$ recursively as

$$\binom{ua}{vb}_q = q^{|vb|} \binom{u}{vb}_q + \delta_{a,b} \binom{u}{v}_q; \qquad \binom{u}{\varepsilon}_q = 1; \qquad \binom{\varepsilon}{v}_q = 0 \quad (v \neq \varepsilon)$$

Examples:

$$\cdot {abbaba \choose ab}_q = q^8 + q^7 + q^5 + q^2;$$

$$\bullet \binom{abbab}{ab}_{a} = q^6 + q^5 + q^3 + 1;$$

•
$$\binom{aabaa}{aa}_a = q^6 + q^4 + 2q^3 + q^2 + 1.$$

$${\binom{n+1}{k+1}}_q = q^{k+1} {\binom{n}{k+1}}_q + {\binom{n}{k}}_q$$
$${\binom{ua}{vb}} = {\binom{u}{vb}} + \delta_{a,b} {\binom{u}{v}}$$

$$\binom{ua}{vb}_q = q^{|vb|} \binom{u}{vb}_q + \delta_{a,b} \binom{u}{v}_q$$

Clear from definition

•
$$\binom{a^n}{a^m}_q = \binom{n}{m}_q$$
.

Is this the right definition?

$$\binom{ua}{vb}_q = q^{|vb|} \binom{u}{vb}_q + \delta_{a,b} \binom{u}{v}_q$$

- Should be meaningful;
- Should maintain "nice" properties/identities;
- Have useful applications?

$$\bullet \binom{aabaa}{aa}_q = q^6 + q^4 + 2q^3 + q^2 + 1$$

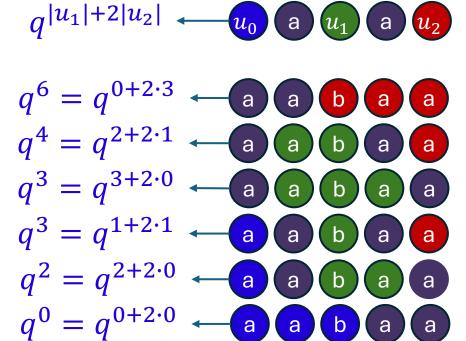
Where are these coming from?

Theorem (Renard, Rigo, W., 2025)

Let u be a word over A, $k \geq 0$, and $a_1, \ldots, a_k \in A$.

Then
$$\binom{u}{a_1 \cdots a_k}_q = \sum_{\substack{u_0, u_1, \dots, u_k \in A^* \\ u = u_0 a_1 \cdots u_{k-1} a_k u_k}} q^{\sum_{i=1}^k i |u_i|}.$$

• Each occurrence of the subword $a_1 \cdots a_k$ gives a monomial q^{α}



q-deformations

Gaussian binomial coefficients
q-binomial coefficients of words
Properties
q-analogs of theorems

Based on: A. Renard, M. Rigo, W.: Introducing *q*-deformed binomial coefficients of words.

J Algebr Comb 61:25 (2025). https://doi.org/10.1007/s10801-025-01384-9

A. Renard, M. Rigo, W.: *q*-Parikh matrices and *q*-deformed binomial coefficients of words, Discrete Mathematics, **348**:5 (2025). https://doi.org/10.1016/j.disc.2024.114381

Binomial coefficients over A*

Pascal-like recursion

$$\binom{ua}{vb} = \binom{u}{vb} + \delta_{a,b} \binom{u}{v}$$

• *q*-Vandermonde identity

$$\binom{n+m}{k}_q = \sum_j q^{j(m-k+j)} \binom{n}{j}_q \binom{m}{k-j}_q$$

Vandermonde for words

$$\begin{pmatrix} uw \\ v \end{pmatrix} = \sum_{v_1 v_2 = v} \begin{pmatrix} u \\ v_1 \end{pmatrix} \begin{pmatrix} w \\ v_2 \end{pmatrix}$$

• Other identities ...

$$\cdot \sum_{v \in A^k} \binom{u}{v} = \binom{|u|}{k}$$

q-binomial coefficients over A^*

Definition:

$$\binom{ua}{vb}_q = q^{|vb|} \binom{u}{vb}_q + \delta_{a,b} \binom{u}{v}_q$$

• *q*-Vandermonde for words

$$\binom{uw}{v}_{q} = \sum_{v=v_{1}v_{2}} q^{|v_{1}|(|w|-|v_{2}|)} \binom{u}{v_{1}}_{q} \binom{w}{v_{2}}_{q}$$

• Other *q*-identities ...

Binomial coefficients over A^*

• (Generalised) Parikh matrices (à la Şerbănuţă 2004)

• Shuffle (formal series $\mathbb{N} \ll A^* \gg$) (à la Lothaire 1 (Sakarovitch & Simon))

• Infiltration (formal series $\mathbb{N} \ll A^* \gg$)

q-binomial coefficients over A^*

• q-Parikh matrices? (Initially studied by Eğecioğlu (2004))

q-Shuffle?

q-infiltration?

q-deformations

Gaussian binomial coefficients
q-binomial coefficients of words
Properties
q-analogs of theorems

Based on: A. Renard, M. Rigo, W.: Introducing *q*-deformed binomial coefficients of words.

J Algebr Comb 61:25 (2025). https://doi.org/10.1007/s10801-025-01384-9

A. Renard, M. Rigo, W.: *q*-Parikh matrices and *q*-deformed binomial coefficients of words, Discrete Mathematics, **348**:5 (2025). https://doi.org/10.1016/j.disc.2024.114381

Definition

Recall that a language $L \subseteq A^*$ is *recognised* by a monoid M if there exist a subset $S \subset M$ and a monoid morphism $\varphi : A^* \to M$, such that $L = \varphi^{-1}(S)$.

A language is *recognisable* if it is recognised by a *finite* monoid.

A language is a p-group language if it is recognised by a p-group.

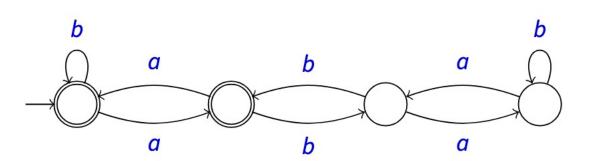
Recognisable languages =

Regular languages

Theorem (Eilenberg's p-group languages, 1976)

Let p be a prime. A language is a p-group language if and only if it is a Boolean combination of languages of the form $L_{v,r,p} := \{u \in A^* \mid \binom{u}{v} \equiv r_{\bullet} \pmod{p}\}$.

Example: $L_{ab,0,2}$



r an element of \mathbb{F}_p

We consider languages of the form $L_{v,R,M} := \left\{ u \in A^* \mid \binom{u}{v}_q \equiv R \pmod{M} \right\}$, where $M \in \mathbb{F}_p[q]$ with $\deg(M) \geq 1$ and $R \in \mathbb{F}_p[q]$ with $\deg(R) < \deg(M)$.

• We follow Eilenberg's approach to define a congruence on A^* using qbinomial coefficients.

Definition ((u, M)-binomial equivalence relation)

Let
$$u \in A^+$$
 and $M \in \mathbb{F}_p[q]$ with $\deg(M) \geq 1$. Define $w_1 \sim_{u,M} w_2 \Leftrightarrow \forall v \in \operatorname{Fac}(u) : \binom{w_1}{v}_q \equiv \binom{w_2}{v}_q \pmod{M}$.

- Problem: not always a congruence
- Solution: Consider congruences that refining $\sim_{u,M}$

Definition ((u, M)-binomial equivalence relation)

Let
$$u \in A^+$$
 and $M \in \mathbb{F}_p[q]$ with $\deg(M) \geq 1$. Define $w_1 \sim_{u,M} w_2 \Leftrightarrow \forall v \in \operatorname{Fac}(u) : \binom{w_1}{v}_q \equiv \binom{w_2}{v}_q \pmod{M}$.

• If q is not invertible in $\mathbb{F}_p[q]/\langle M \rangle$, then A^*/\equiv is **not** a group for any congruence \equiv that refines $\sim_{u,M}$.

- Set $\equiv_{u,M}$ to be the coarsest congruence that refines $\sim_{u,M}$. If q is invertible in $\mathbb{F}_p[q]/\langle M \rangle$, then $A^*/\equiv_{u,M}$ is a group.
- The group has order that divides $per(q) \cdot p^{|u|}$.

• Simple polynomial algebra: q is invertible in $\mathbb{F}_p[q]/\langle M \rangle$ and has per(q) a power of p, then $M=t(q-1)^d$ for some non-zero t.

Theorem (Renard, Rigo, W., 2025)

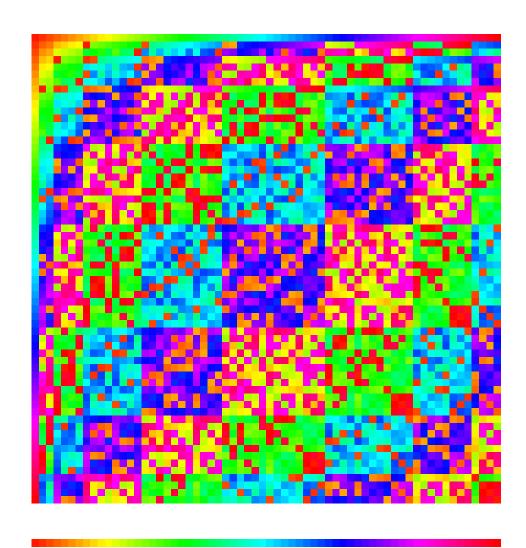
Let p be a prime, $d \ge 1$ an integer, and $t \in \mathbb{F}_p^*$ non-zero. A language is a p-group language if and only if it is a Boolean combination of languages of the form

$$L_{v,R} = \left\{ u \in A^* \mid \binom{u}{v}_q \equiv R \pmod{t(q-1)^d} \right\},$$

where $R \in \mathbb{F}_p[q]$ has $\deg(R) \leq d$.

Proof sketch: Let $\pi: A^* \to G: = A^*/\equiv_{u,M}, x \mapsto [x]$. Take $S \subseteq G$ the classes [y] for which $\binom{y}{v}_q \equiv R \pmod{M}$. Then $\pi^{-1}(S) = L_{v,R,t(q-1)^d}$.

Finally, Eilenberg's $L_{v,r,p}$ is a disjoint union of those $L_{v,R,t(q-1)^d}$, where $R(1) = r \pmod{p}$.



а b а b **16**) a

Automaton for L_{ab,R,q^2+1}

Group table of $\{a,b\}^*/\sim_{ab,q^2+1}$

Conclusions

Recap: *q*-binomial coefficients of words

Ongoing work: *q*-binomial coefficients over free monoid?

Other directions: invitation

$$\begin{pmatrix} n \\ m \end{pmatrix} \quad n, m \in \mathbb{N} \longrightarrow \begin{pmatrix} n \\ m \end{pmatrix}_{q} \quad n, m \in \mathbb{N}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} u \\ v \end{pmatrix} \quad u, v \in A^* \longrightarrow \begin{pmatrix} u \\ v \end{pmatrix}_{q} \quad u, v \in A^*$$

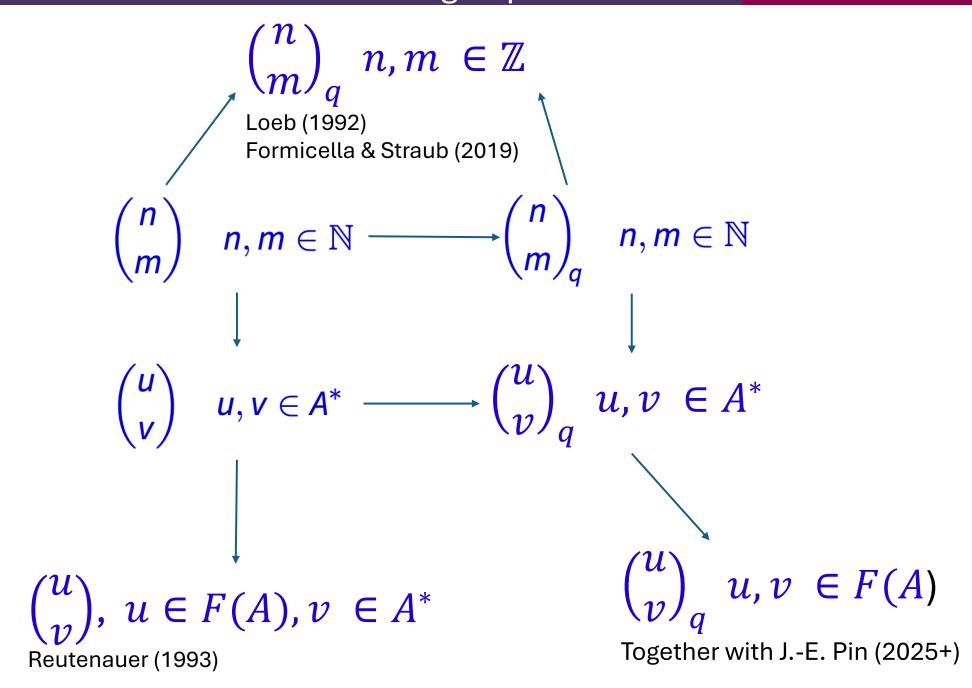
- Defined *q*-binomial coefficients for words
- Studied basic properties and found q-analog of Eilenberg's p-group languages.
- Conclusion: seems to be a "good" deformation
- A lot of open directions...

Definition ((u, M)-binomial equivalence relation)

Let
$$u \in A^+$$
 and $M \in \mathbb{F}_p[q]$ with $\deg(M) \geq 1$. Define $w_1 \sim_{u,M} w_2 \Leftrightarrow \forall v \in \operatorname{Fac}(u) : \binom{w_1}{v}_q \equiv \binom{w_2}{v}_q \pmod{M}$.

- If q is not invertible in $\mathbb{F}_p[q]/\langle M \rangle$, then A^*/\equiv is **not** a group for any congruence \equiv that refines $\sim_{u,M}$.
- Set $\equiv_{u,M}$ to be the coarsest congruence that refines $\sim_{u,M}$. If q is invertible in $\mathbb{F}_p[q]/\langle M \rangle$, then $A^*/\equiv_{u,M}$ is a group.
- The group has order that divides $per(q) \cdot p^{|u|}$.

- What can be said about these languages?
 - Seem to be quite structured...



- Gaussian binomial coefficients are products of cyclotomic polynomials.
 - Roots are roots of unity.
- This is not the case for q-binomial coefficients of words.
 - We have a conjecture on the language of (binary) words u such that for all x, $\binom{u}{x}_q$ is a product of cyclotomic polynomials and powers of q.
 - Any root is 0 or a root of unity.

- How large can the maximal-in-modulus root be?
 - Mild experiments suggest: < 2 in absolute value
- Combinatorial consequences from roots?

Thanks for your attention!

Happy to take any questions or comments!