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Nicolas Bédaride

Global complexity of billiard inside a cube

Consider the billiard map in the cube coded with 3 letters: the same

letter for parallel faces.

The (global) cubic billiard language is the set of all the words which

code any finite billiard trajectory.

Can we find an exact formula for its complexity function?

We know that it is in Θ(n6).

For the same problem in the square, we have an exact formula.



Štěpán Holub

Periodicity forcing

Find all four-tuples (i, j, k, `) ∈ N4 for which the following holds:

If X, Y , U , V are four words such that |X|, |Y |, |U | ≤ |V | satisfying

XiY XjY XkY X` = U iV UjV UkV U`

then all four words commute or X = U and Y = V .

(we say that the equality is periodicity forcing).



Note that this can be naturally reformulated as follows:

For what words

aibajbakba`

are there two distinct and not (both) periodic morphisms g and h

such that

g(aibajbakba`) = h(aibajbakba`).

(Such a word is called binary equality word. The length condition

above breaks the symmetry between a and b — as well as between g

and h — by requiring that the longest word is h(b).)



Some known cases:

• Y XY Y X = V UV V U is periodicity forcing

• XYXY Y = UV UV V is periodicity forcing

• XiY Y Y = U iV V V is not periodicity forcing

• XYXYXYX = UV UV UV U and Y XY XY = V UV UV

are not periodicity forcing

Simplest unknown case:

XXY Y XY X = UUV V UV U.



Gandhar Joshi

Anti-recurrence sequences



Anti-Recurrence Sequences

The following problem stems from our recent preprint [2]. In a linear recurrence sequence,
each term is a linear combination of the ones that came before it. The first example that
jumps to everyone’s mind is the Fibonacci sequence

Fn+1 = Fn + Fn−1,

starting from the initial conditions F0 = 0 and F1 = 1. Recurrence sequences are defined
by earlier terms in the sequence. In contrast with this, the anti-recurrence sequences are
defined by earlier terms that are not in the sequence. The anti-Fibonacci numbers start with
A0 = 0. They extend by the rule that the next anti-Fibonacci number is the sum of the two
most recent NON-members of the anti-Fibonacci sequence. The first two non-members 1
and 2 add up to the anti-Fibonacci A1 = 3. The next two non-members are 4 and 5, which
add up to the anti-Fibonacci A2 = 9, etc. This sequence is listed under A075326 in the
On-Line Encyclopedia of Integer Sequences.

0, 3, 9, 13, 18, 23, 29, 33, 39, 43, 49, 53, 58, 63, 69, 73, 78, 83, 89, 93, 98, 103, 109, 113, . . .

All numbers with final digit 3 are anti-Fibonaccis, and the other anti-Fibonaccis either end
with a 9 or an 8. Hofstadter in an unpublished note [3] observed, without giving a proof,
that the pattern of 9’s and 8’s can be generated from a period-doubling substitution

9 7→ 98, 8 7→ 99.

The proof was supplied by Thomas Zaslavsky, in another unpublished note [6]. In particular,
he gave an explicit equation for the anti-Fibonacci numbers

For all n ≥ 1, A075326(n) − 5n + 2 = PDn−1. (1)

Note that the indexing for PDn runs from 0 and not from 1.
Clark Kimberling and Peter Moses studied the more general class of complementary se-

quences [4], for which anti-recurrence sequences are a special case. They observed some
properties of anti-recurrence sequences, which Kimberling entered as conjectures under
A265389, A299409, A304499, and A304502 in the OEIS. The conjectures for the first two se-
quences were verified by Bosma et al. [1] using Hamoon Mousavi’s automatic theorem prover
Walnut [5]. We settled the other two conjectures on A304499 and A304502 in [2], again with
the assistance of Walnut. These conjectures can be combined into a meta-conjecture, which
specifies the discussion in section six of [4]. It was named the Clergyman’s conjecture in [1].

Conjecture 1. Every anti-recurrence sequence is a sum of a linear sequence and an auto-
matic sequence.
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Anuran Maity

Closed-rich constant of infinite words



ON THE CLOSED-RICH CONSTANT OF INFINITE WORDS

ANURAN MAITY; SVETLANA PUZYNINA

A finite word is called closed if it has length at most 1 or it contains a proper factor that

occurs both as a prefix and as a suffix but does not have internal occurrences. For example,

the word ababa is a closed word. The number of closed factors in a word w is denoted by

Cl(w). An infinite word u is called closed-rich ([1]) if there exists a constant C > 0 such that

any factor of length n of u contains at least Cn2 distinct closed factors. The real number

Cu = sup {C : Cl(w) ≥ C|w|2 for each w ∈ Σ+ ∩ Fac(u)} is called the closed-rich constant

of u. Equivalently, Cu = inf{Cl(w)
|w|2 | w ∈ Fac(u), |w| ≥ 1}. Consider

Csup = sup{Cu : u is an infinite closed-rich word}.

In our work, we have shown that 0.0952 < Csup ≤ 0.165964. With the help of infinite

Fibonacci sequence f , we get the lower bound of Csup. This work leads to the following

question and conjectures:

• Question 1 : Is it true that any real number in (0, Csup) is a closed-rich constant

of some infinite closed-rich word? If not, is the set of closed-rich constants dense in

(0, Csup)?

• Conjecture 1:

For the Fibonacci sequence f , let Mn = min{Cl(w) : w is a factor of f of length n}
and Rn = Mn −Mn−1. Then,

{Rn}n≥1 = 1, 1, 1, 1, F0, F2, F0, F2︸ ︷︷ ︸, F1, F1, F3, F1, F1, F3︸ ︷︷ ︸, F2, F2, F2, F4, F4, F2, F2, F2, F4, F4︸ ︷︷ ︸, · · ·

In other words, if we denote repetitions in a sequence by exponents and concate-

nation by the symbol
∏

, then we can rephrase the above statement as follows:

{Rn}n≥1 = 1, 1, 1, 1,
∞∏

m=0

Fm
Fm , Fm+2

Fm−1 , Fm
Fm , Fm+2

Fm−1 .

1



ON THE CLOSED-RICH CONSTANT OF INFINITE WORDS

ANURAN MAITY; SVETLANA PUZYNINA

A finite word is called closed if it has length at most 1 or it contains a proper factor that

occurs both as a prefix and as a suffix but does not have internal occurrences. For example,

the word ababa is a closed word. The number of closed factors in a word w is denoted by

Cl(w). An infinite word u is called closed-rich ([1]) if there exists a constant C > 0 such that

any factor of length n of u contains at least Cn2 distinct closed factors. The real number

Cu = sup {C : Cl(w) ≥ C|w|2 for each w ∈ Σ+ ∩ Fac(u)} is called the closed-rich constant

of u. Equivalently, Cu = inf{Cl(w)
|w|2 | w ∈ Fac(u), |w| ≥ 1}. Consider

Csup = sup{Cu : u is an infinite closed-rich word}.

In our work, we have shown that 0.0952 < Csup ≤ 0.165964. With the help of infinite

Fibonacci sequence f , we get the lower bound of Csup. This work leads to the following

question and conjectures:

• Question 1 : Is it true that any real number in (0, Csup) is a closed-rich constant

of some infinite closed-rich word? If not, is the set of closed-rich constants dense in

(0, Csup)?

• Conjecture 1:

For the Fibonacci sequence f , let Mn = min{Cl(w) : w is a factor of f of length n}
and Rn = Mn −Mn−1. Then,

{Rn}n≥1 = 1, 1, 1, 1, F0, F2, F0, F2︸ ︷︷ ︸, F1, F1, F3, F1, F1, F3︸ ︷︷ ︸, F2, F2, F2, F4, F4, F2, F2, F2, F4, F4︸ ︷︷ ︸, · · ·

In other words, if we denote repetitions in a sequence by exponents and concate-

nation by the symbol
∏

, then we can rephrase the above statement as follows:

{Rn}n≥1 = 1, 1, 1, 1,
∞∏

m=0

Fm
Fm , Fm+2

Fm−1 , Fm
Fm , Fm+2

Fm−1 .

1



• Conjecture 2:

For the Fibonacci sequence f , the closed-rich constant Cf = 5ϕ+3
45ϕ+29

≈ 0.10893

where ϕ is the golden ratio.

[Recall the Fibonacci sequence: Let (fn)n≥−1 denotes the sequence of Fibonacci words

where f−1 = b, f0 = a, and fn = fn−1fn−2 for n ≥ 1. The word fn are referred to as the

n-th Fibonacci word and f = lim
n→∞

fn is called the infinite Fibonacci word. Also, |fn| = Fn

for n ≥ −1.]
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Kristina Ago

MP-ratio for n-ary words



An open problem on MP-ratio for n-ary words

The MP-ratio is one of measures of how palindromic a given word is. For

an n-ary word w, its MP-ratio is defined as |rws|
|w| , where (r, s) is a pair words of

minimal length such that rws is minimal-palindromic (contains no palindromic

subwords longer than ⌈ |rws|
n ⌉). This notion was first introduced by Holub and

Saari [2], in the setting of binary words.
Recent work has established optimal upper bounds for small alphabets: the

MP-ratio is at most 4 for binary words, 6 for ternary words, and 8 for quaternary
words. All these bound are optimal in the asymptotic sense. Also, it is known
that in the n-ary case the optimal bound is between 2n and the order of the
growth n2

n
2 . For a more comprehensive overview, we refer to the introduction

of the paper from this conference [1].

Open problem

What is the optimal upper bound on the MP-ratio for n-ary words when n ⩾ 5?
Of course, obtaining the exact formula would be the ultimate goal. If not, then
at least the asymptotic behavior would still be very satisfying. If this is still
too hard, then replacing 2n by anything superlinear, and/or finding any o(n2

n
2 )

upper bound could also be considered as a significant step forward.

A (possibly) more approachable subproblem

The general question seems quite challenging (all the mentioned versions of it).
A more modest goal would be to show that, for n = 5, the optimal upper bound
on the MP-ratio is strictly greater than 10. This means that there exists a word
w that does not possess an MP-extension (r, s) such that |rws| ⩽ 10|w|. Let us
try to explain why our intuition suggests that this might be true.

For alphabets with up to four letters, existing constructions rely heavily on
very uneven (asymmetric) arrangements of the letters. For example, in the case
of four letters, the letters 0 and 1 are placed only on one side, while the letters
2 and 3 are arranged as asymmetrically as possible around w. Our experiments
suggest that this is indeed the key for any reasonable construction. However,
when the alphabet size increases to five letters, breaking symmetry in this way
is not enough; no matter how the fifth letter is arranged, it tends to create too
long palindromic subwords.
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Jaros law Grytczuk

Square-free words on a chessboard

Let n be a positive integer. Consider a 3 × n chessboard whose

squares have been filled with letters so that each column contains

three distinct letters.

Is it always possible to permute the letters in each column so that a

square-free word is formed in each row?



Martin Lustig

Substitutive subshifts



We now observe that, again, for any d • 2 the d ˆ pd ` 1q-matrix M 1
dp`q :“ Mp�dp`q ˝ ⌧dq maps

~cd`1 to a multiple of ~cd , and ~ek (for 1 § k § d) to some �~ek `�1~cd, with �{�1 large for large `. Hence
the same arguments as before show that, for any fixed d • 2 and varying large n • d, the subcone of
Rn`1

•0 spanned by ~e1, . . . , ~ed has for the products M 1
dp`dpdqq ¨ M 1

d`1p`dpd ` 1qq ¨ . . . ¨ M 1
np`dpnqq nested

image-cone intersection “from infinity” of dimension d, provided that the parameters `dpnq grow
fast enough for n Ñ 8. Setting `pnq :“ maxt`2pnq, `3pnq, . . . , `npnqu we obtain from the above
injectivity of the measure transfer and from the criteria in Propositions 2.3 and 2.4 the desired
conclusion:

Theorem 3.2 ([4], Thm. 7.4). For any su�ciently fast growing family of positive integers p`pnqqn•2

the subshift X Ñ AZ
2 generated by the directive sequence p�np`pnqq˝⌧nqn•2 possesses infinitely many

distinct invariant ergodic probability measures. Furthermore X is minimal and has entropy hX “ 0.

The method presented here admits many more applications, both with respect to showing unique
ergodicity as well as showing the existence of infinitely many ergodic probability measures. Pre-
liminary calculations of the speaker indicate the possibility of such applications for instance to the
Avila-Damanik-Zhang counter-examples to the Simon conjecture in [1], to the “Grillenberger-type”
subshifts exhibited by Cassaigne-Nicolas in §4.4.3 of [7], to the results of Méla-Petersen [11] for the
Pascal-adic subshift, and also towards unique ergodicity results “à la Boshernitzan” for subshifts
of infinite alphabet rank.

4. What really is the true nature of a subshift ?

The free monoid A˚ over the alphabet A “ ta1, . . . , adu embeds canonically into the free group
F pAq over A. But contrary to A˚, where the minimal generating system A is uniquely determined
by A˚, in F pAq there are infinitely many sets B “ tw1, . . . , wdu Ñ F pAq with canonical isomor-
phisms F pBq – F pAq – Fd, and none of these bases for the free group Fd of rank d • 2 is preferred
in any way. Any subshift X over A gives canonically rise (by passing to the language LpXq) to a
“subshift with inverses” over B, which has led to the basis-free notion of an algebraic lamination
in Fd (see [8]), together with a canonical embedding ⌃pAq Ñ ⇤pF pAqq of the space of subshifts
⌃pAq into the space of algebraic laminations ⇤pF pAqq. Similarly, the space of invariant measures
MpAZq embeds canonically into the space of currents MpF pAqq.

ASIDE: Symbolic dynamists feel traditionally uneasy about the behavior of inverses under mor-
phisms, but this is mainly due to the fact that the notion of train track maps has not yet dissipated
into the symbolic dynamics community. With this tool the whole S-adic machinery as well as most
other symbolic dynamics methods and results could (and should) be carried over from symbolic
dynamics to geometric group theory.

There is also a “response” from geometric group theory towards symbolic dynamics, namely that
any property of a subshift which is not invariant under change of basis is not accepted as “intrinsic”
property, just like properties of matrix groups are not intrinsic properties of the group in question if
they are not invariant under group isomorphisms, or similarly for properties of topological objects,
if they depend on the embedding of the object in an ambient space (like the well known “2-sided
coloring” criterion for a surface to be orientable or not).

To stay within symbolic dynamics terminology I’d like to make this a bit more precise:

Definition 4.1. A property of a subshift X Ñ AZ is said to be intrinsic if, first, for any monoid
morphisms � : A˚ Ñ B˚ which is recognizable in X, the property must also hold for the subshift
�pXq Ñ BZ. Second, for any monoid morphism �1 : C˚ Ñ A˚ and any subshift Y Ñ CZ with
�1pY q “ X, if �1 is recognizable in Y , then the property must also hold for Y .

Examples of intrinsic properties are minimality, unique ergodicity, the number epXq of ergodic
probability measures, the statements hX “ 0 or hX ° 0, and the growth-type of the complexity

5function pXp¨q . The value of hX ° 0 however is not intrinsic, and neither is the complexity function
itself (and not even its equivalence class ⇥ppXq, see [10]).

5. Classification of substitutive subshifts

The speaker has very recently discovered (in the context of investigating a certain type of free
group automorphisms) a new computable invariant for any minimal substitutive subshift, which
consists of a cyclic sequence of finite graphs and graph maps between them. This invariant ap-
pears to be (work in progress) a characterizing invariant of the given subshift, up to recognizable
morphisms as in Definition 4.1.

The technicalities of the graphs in question are not yet matured enough to be presented here
(other than via the examples given in the Annex below), but the main idea ought to be conveyed
anyway:

For any n • 0 the level 2n Rauzy graph R2npXq of a subshift X Ñ A can be reinterpreted as
obtained in the following way: One first realizes X graphically as a (typically infinite) collection
of lines �pxq, one for every x P X, subdivided as biinfinite edge path, with edges labeled by letters
from A according to the letters xk on x “ . . . x´1x0x1 . . .. In a second step we identify any two
vertices P P �pxq and Q P �px1q i↵ the finite sub-edge-paths of length 2n on x and on x1, centered
at P and Q respectively, read o↵ the same word. Finally, to get the finite graph R2npXq we need to
identify any two edges with same endpoints and same label. The subshift X can then be read o↵
from suitable edge paths in R2npXq, and X is characterized by the fact that this “read-o↵ property”
holds for any n • 1. Another pay-o↵ of this alternative construction are canonical label-preserving
graph morphisms R2mpXq Ñ R2npXq for any m • n • 0, which define in turn a canonical S-adic
Rauzy development of X which is always totally recognizable. Locally, each of these label-preserving
graph morphisms is a composition of vertex-identifications and edge-foldings.

In the special case where X is the subshift generated by a primitive substitution �, we can use
the incidence matrix Mp�q and one of its (left) row PF-eigenvectors ~v ˚, in order to define from
the coe�cients of ~v ˚ a length function L on the letters of A (and thus by summation on all of A˚)
which satisfies Lp�paiqq “ �Lpaiq for each ai P A, where � ° 1 is the PF-eigenvalue of Mp�q.

We can now repeat the above definition of the Rauzy graph R2npXq, but replace the combinatorial
length used there (when considering for the vertex identification the 2n-length sub-edge-paths) by
the length L, and apply the identification device not just to vertices but also to points in the interior
of edges (with “read-o↵ equality of sub-edge-paths” refined by passing to �-iterates of those paths).

This gives a continuity of graphs Rp~v ˚q, one for any positive eigenvector ~v ˚ within the uniquely
determined PF-eigen-direction of Mp�q, and for ~v2̊ “ �~v1̊ the corresponding graphs are related
by a graph isomorphism Rp~v1̊ q Ñ Rp~v2̊ q which stretches every edge by the factor �. The compo-
sition Rp~v1̊ q Ñ Rp~v2̊ q Ñ Rp~v1̊ q of this homothetic graph isomorphism with the above “vertex-
identification & edge-folding” map Rp~v2̊ q Ñ Rp~v1̊ q is a topological realization of some substitution
�1 which generates X.

To get to the desired finite cycle of graphs we have to discretize the just obtained continuous
“loop of graphs” in a canonical way. There are several possibilities for this canonical discretization
(all built on periodic points of the composed maps Rp~v1̊ q Ñ Rp~v2̊ q Ñ Rp~v1̊ q, see the examples in
the Annex below), and the choice of the most natural among them is one of the problems still on
my desk.
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which satisfies Lp�paiqq “ �Lpaiq for each ai P A, where � ° 1 is the PF-eigenvalue of Mp�q.

We can now repeat the above definition of the Rauzy graph R2npXq, but replace the combinatorial
length used there (when considering for the vertex identification the 2n-length sub-edge-paths) by
the length L, and apply the identification device not just to vertices but also to points in the interior
of edges (with “read-o↵ equality of sub-edge-paths” refined by passing to �-iterates of those paths).

This gives a continuity of graphs Rp~v ˚q, one for any positive eigenvector ~v ˚ within the uniquely
determined PF-eigen-direction of Mp�q, and for ~v2̊ “ �~v1̊ the corresponding graphs are related
by a graph isomorphism Rp~v1̊ q Ñ Rp~v2̊ q which stretches every edge by the factor �. The compo-
sition Rp~v1̊ q Ñ Rp~v2̊ q Ñ Rp~v1̊ q of this homothetic graph isomorphism with the above “vertex-
identification & edge-folding” map Rp~v2̊ q Ñ Rp~v1̊ q is a topological realization of some substitution
�1 which generates X.

To get to the desired finite cycle of graphs we have to discretize the just obtained continuous
“loop of graphs” in a canonical way. There are several possibilities for this canonical discretization
(all built on periodic points of the composed maps Rp~v1̊ q Ñ Rp~v2̊ q Ñ Rp~v1̊ q, see the examples in
the Annex below), and the choice of the most natural among them is one of the problems still on
my desk.
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Anna Frid
Palindromic length in the free group

The palindromic length of a finite word is the minimal number of
palindromes needed to construct it. Clearly, this notion is different
in the free semigroup and in the free group: for example, in the
semigroup, the palindromic length of abca is 4, and in the group, it is
3 since abca = (aba)(a−1a−1)(aca).

In the semigroup, the palindromic length can clearly be computed,
and fast algorithms exist for that. In the group, it is decidable if the
palindromic length is equal to 2 and perhaps to 3, but the amount of
cases to be considered for the length equal to 3 suggests that even
the case of 4 is too complicated to be treated by the existing method.
So, the general question of decidability remains open, and I am going
to discuss it.



Tarek Sellami

Isolated points in Heinis spectrum



Complexity function and Heinis Spectrum:

Definition
The complexity function of an infinite word u is the map from N to N∗ defined by:

pu(n) = |Ln(u)|.

Definition
The Heinis spectrum denoted by H and defined as follows:

H = {(α,β) : u ∈ AN s.t. u is recurrent} ⊆ (R∪{+∞})2.

where α = liminfn→∞
pu(n)

n and β = limsupn→∞
pu(n)

n for every u ∈ AN.

Examples:
(α,β) = (1,1) for sturmian words.

(α,β) = (2,2) for Arnoux-Rauzy words.

(α,β) = (3, 10
3 ) for Thue-morse word.
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Theorem

The point (α,β) = ( 3
2 ,

5
3 ) is an isolated point in H and it can be obtained from the fixed point u of

the following substitution defined over the alphabet {a,b} by:

τ : a −→ bb

b −→ ba.

Figure: Some points of Heinis spectrum. [J. Cassaigne]

Tarek Sellami 1 July 2025, Nancy, France 3 / 9



Theorem
Let u be an infinite word with infinitely many Rauzy graphs of type S, and let n0,k ∈ N.
Assume that, for every n ≥ n0, if Γn is a graph of type S, then it undergoes the evolution
O2,x ◦Ok

1,y (resp. Ok
1,y ◦O2,x). Then:

(α,β) = (1+
2

(k+1)(
√

∆+ k+1)
;1+

5k+
√

∆+9
6k2 +22k+18

),

where ∆ = k2 +2k+9.

Figure: Potential Isolated Points within H.
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Question:
Are the points (α,β) obtained with O2,xOk

1,y isolated points in H?

A similar calculation can be done for Om,xOk
1,y with m ≥ 3 to obtained (α,β).

Are these points also isolated in H?

Thank you for your attention!
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Definition
For all n ∈ N, the Rauzy graph of order n of u, denoted by Γn(u) ( or Simply Γn), is the labelled
directed graph, such that:

Its vertices are the factors of length n of u.

There exists an edge from a vertex w to a vertex v if and only if there exist a,b ∈ A such that
wa = bv ∈ Ln+1(u). The letter a is called label of the edge from w to v, and we note w a−→ v.

Notations
S(n,x,y) is the graph of order n with a bispecial factor and x,y are the words which are the
labels of the two loops.

T(n,x,y,z) is the graph of order n with only one right and one left special factor, x,y and z
are the words labelling the branches.

Figure: Sturmian graphs.
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Definition
We note O1,x and O1,y two types of evolutions between two graphs of type S defined by:

O1,x(S(n,x,y)) = (G1,G2, ...,G|x|), where:

Gi = T(n+ i,yxJ0,iJ,xJ0,iJ,xJ|x|−i,|x|J) if 1 ≤ i < |x|, and,

G|x| = S(n+ |x|,yx,x), otherwise.

O1,y(S(n,x,y)) = (G1,G2, ...,G|y|) , where:

Gi = T(n+ i,xyJ0,iJ,yJ0,iJ,yJ|y|−i,|y|J) if 1 ≤ i < |y|, and,

G|y| = S(n+ |y|,xy,y), otherwise.

For m ≥ 2, we define the evolution Om,x on graphs of type S by: Om,x(S(n,x,y)) = (G1, ...,G|x|)
where |x|> (m−1)|y| (otherwise not defined), and for wich the next Rauzy graph of type S is:

G|x| = S(n+ |x|,ymx,x).
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Lemmas:
Let u be an infinite word with infinitely many Rauzy graphs of type S, and let n0,k ∈ N.
If for every n ≥ n0, if Γn is a graph of type S, then it undergoes the evolution:

Om,x with m ≥ 3 =⇒ β ≥ 5α2 −3α
2α2 −α+1

.

O2,xO1,x =⇒ β ≥ 4α2 −3α
2α2 −2α+1

.

O2,xO1,y =⇒ β ≥ (6α−5)α
2α2 −1

.

O1,xO1,y =⇒ β ≥ α
2−α

.
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Using the same idea, we are trying to prove that (α,β) obtained before (the case of O2,xOk
1,y are

isolated in H, and we start by the case of k = 1:

Lemmas:
Let u be an infinite word with infinitely many Rauzy graphs of type S, and let n0 ∈ N.
If for every n ≥ n0, if Γn is a graph of type S, then it undergoes the evolution:

Om,x with m ≥ 3 =⇒ β ≥ 5α2 −3α
2α2 −α+1

.

O2,xO1,x =⇒ β ≥ 4α2 −3α
2α2 −2α+1

.

O1,xO1,y =⇒ β ≥ α
2−α

.

O2,xO2,x =⇒ β ≥ 4α
1+2α

.

O2,xO1,yO1,y: β ≥ 9α2 −8α
3α2 −2

.
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Savinien Kreczman

Context-freeness of languages

derived from a greedy numeration system



Context-freeness of languages derived from a greedy
numeration system

Start with a linear recurrence sequence (Un)n∈N.
A numeration system can be defined from such a sequence
using a greedy algorithm. The language of this numeration
system is

LU = {rep(n) : n ∈ N}
= {wℓ · · ·w0 : ∀j , wj−1 · · ·w0 ≼ rep(Uj − 1)}

We let Maxlg LU = {rep(Uj − 1) : j ∈ N}.
The sequence Un has a dominant root if Un

Un−1
has a limit.

2



Context-freeness of languages derived from a greedy
numeration system

Question
Does there exist a sequence U with a dominant root, such that
Maxlg LU is context-free but not regular?

Question
Is it true that Maxlg LU context-free implies LU context-free?
(True for regularity)

Question
Is context-freeness even "the right" extension of regular
languages to look at?
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A nondominant example

Consider the sequence U given by

Un+6 = 6Un+4 − 9Un+2 + 4Un

and the initial conditions

1,3,6,17,25,73.

The sequence continues 100,297,399, . . . and we have for
instance

296 = 2 · 100 + 73 + 17 + 6, rep(296) = 2101100
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Some pictures
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Bart lomiej Pawlik

Shuffle squares



Reconstructing Shuffle Squares from Cuts
Jaros law Grytczuk, Bart lomiej Pawlik, Mariusz Pleszczyński

Tangram is a word in which every letter occurs an even number of times.

Some binary shuffle squares:

001001 011000 001100

001010 011011 010111

Previous conjecture (2023):

For every binary tangram W , there exists a factorisation W = AB such that BA is
a shuffle square.

100010 = 10|0010 → 0010|10 = 001010

Counterexample (2024): 05102140413014

Modified conjecture (2024):

For every k ⩾ 2 and every tangram W over Ak there exists factoristation of W into (k + 1)
factors such that the concatenation of some permutation of these factors forms a shuffle

square.

000001001111000011101111 = 0000|01|001111000011101111 →
→ 0000|001111000011101111|01 = 000000111100001110111101

1



Collecting the shuffle squares
Bart lomiej Pawlik

For any natural language, construct the longest sentence in that language, which is a shuf-
fle square but not a square. (thus the words like HOTSHOTS are not allowed)

Known words: h̊ah̊ajaja (Swedish), tuteurer (French)

HÅHÅJAJA, TUTEURER

Known sentences (Polish):

• Andrzej Ruciński, July 2023, length 12:

Nina, mima mama. (Nina, mum of the mime.)

NINAMIMAMAMA

• Jan Szejko, August 24th 2024, length 22:

Dziedziczenie czekanika. (Inheritance of the small ice axe.)

DZIEDZICZENIECZEKANIKA

1



Gabriele Fici

Cyclic equalizability of words

Given two words u1...un and v1...vn, and i ≤ n, an insertion of letter a

at position i produces u1...ui−1aui...un and v1...vi−1avi...vn.

Given two binary words u and v with the same Parikh vector, it is

always possible to find a sequence of insertions that produces two

conjugated words (Shinagawa & Nuida, FCT 2025).

Is it possible to do the same for three binary words?


